Mostrar el registro sencillo del ítem
dc.contributor.author | García-Alén, Gonzalo | es_ES |
dc.contributor.author | García-Feal, Orlando | es_ES |
dc.contributor.author | Cea, Luis | es_ES |
dc.contributor.author | Puertas, Jerónimo | es_ES |
dc.date.accessioned | 2023-02-08T08:27:16Z | |
dc.date.available | 2023-02-08T08:27:16Z | |
dc.date.issued | 2023-01-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/191708 | |
dc.description.abstract | [EN] Accounting for the flood routing effect of reservoirs in the assessment of flood discharges is essential in basins where the hydrology is conditioned by the presence of one or more dams. This paper presents the implementation of reservoirs and dams in the hydrological module of the software Iber, which solves the two-dimensional shallow water equations at the scale of an entire basin. Spillways with and without gates, low level outlets, and the possibility to define an ad hoc outflow curve relating the flow rate to the reservoir level are included. As a case study, the effect of the Iznájar reservoir on the hydrology of the Genil basin in Spain was modelled. Three scenarios were considered to compare the effect of the different outflow structures included in this new implementation in Iber. The defined methodology proves to be able to represent numerically the outflow structures, addressing a fundamental limitation in the modelling of large basins with Iber. | es_ES |
dc.description.abstract | [ES] La consideración del efecto laminador de los embalses en la evaluación de caudales de avenida es un aspecto fundamental en aquellas cuencas donde la hidrología está condicionada por la presencia de presas. En este trabajo se presenta la implementación de embalses y presas en el módulo hidrológico del modelo Iber, el cual resuelve las ecuaciones de aguas someras bidimensionales a escala de toda una cuenca. Para la modelización del caudal de salida del embalse se incluyen aliviaderos con y sin compuerta, desagües de fondo y la posibilidad de definir una curva de desagüe ad hoc que relacione el caudal de salida con el nivel del embalse. Como caso de estudio se modeló el efecto del embalse de Iznájar en la hidrología de la cuenca del río Genil, en España. Se consideraron tres hipótesis de cálculo con el fin de comparar el efecto de los diferentes órganos de desagüe definidos en esta nueva implementación en Iber. La metodología definida demuestra ser capaz de representar numéricamente los órganos de gestión del embalse y resolver así una limitación fundamental en el modelado de grandes cuencas con Iber. | es_ES |
dc.description.sponsorship | La investigación que aquí se presenta ha sido financiada por el proyecto EAPA_45/2018_AA-FLOODS | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Reservoir | es_ES |
dc.subject | Dam | es_ES |
dc.subject | Hydrology | es_ES |
dc.subject | Iber | es_ES |
dc.subject | Lamination | es_ES |
dc.subject | Flood | es_ES |
dc.subject | Embalse | es_ES |
dc.subject | Presa | es_ES |
dc.subject | Hidrología | es_ES |
dc.subject | Laminación | es_ES |
dc.subject | Avenida | es_ES |
dc.title | Implementación de embalses en cálculos hidrológicos con Iber | es_ES |
dc.title.alternative | Implementation of reservoirs in hydrological calculations with Iber | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.18750 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Interreg//EAPA_45%2F2018_AA-FLOODS | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García-Alén, G.; García-Feal, O.; Cea, L.; Puertas, J. (2023). Implementación de embalses en cálculos hidrológicos con Iber. Ingeniería del Agua. 27(1):59-72. https://doi.org/10.4995/ia.2023.18750 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.18750 | es_ES |
dc.description.upvformatpinicio | 59 | es_ES |
dc.description.upvformatpfin | 72 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\18750 | es_ES |
dc.contributor.funder | Interreg | es_ES |
dc.description.references | Bellos, V., Papageorgaki, I., Kourtis, I., Vangelis, H., Kalogiros, I., Tsakiris, G. 2020. Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm. Natural Hazards, 101(3), 711–726. https://doi.org/10.1007/s11069-020-03891-3 | es_ES |
dc.description.references | Bladé-Castellet, E., Cea, L., Corestein, G. 2014. Modelización numérica de inundaciones fluviales. Ingeniería Del Agua, 18(1), 68. https://doi.org/10.4995/ia.2014.3144 | es_ES |
dc.description.references | Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 | es_ES |
dc.description.references | Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resources Research, 51(7), 5464–5486. https://doi.org/10.1002/2014WR016547 | es_ES |
dc.description.references | Cea, L., Fraga, I. 2018. Incorporating Antecedent Moisture Conditions and Intraevent Variability of Rainfall on Flood Frequency Analysis in Poorly Gauged Basins. Water Resources Research, 54(11), 8774–8791. https://doi.org/10.1029/2018WR023194 | es_ES |
dc.description.references | Cea, L., Legout, C., Darboux, F., Esteves, M., Nord, G. 2014. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data. Journal of Hydrology, 513, 142–153. https://doi.org/10.1016/j.jhydrol.2014.03.052 | es_ES |
dc.description.references | Cea, L, Garrido, M., Puertas, J., Jácome, A., Del Río, H., Suárez, J. 2010. Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 62(9), 1998–2008. https://doi.org/10.2166/wst.2010.746 | es_ES |
dc.description.references | Cea, Luis, Álvarez, M., Puertas, J. 2022. Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique). Journal of Hydrology: Regional Studies, 44, 101247. https://doi.org/10.1016/j.ejrh.2022.101247 | es_ES |
dc.description.references | Cea, L., Vila, G., García-Alén, G., Puertas, J., Pena, L. 2022. Hydraulic Modeling of Bridges in Two-Dimensional Shallow Water Models. Journal of Hydraulic Engineering, 148(8), 6022006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001992 | es_ES |
dc.description.references | Costabile, P., Costanzo, C., Macchione, F. 2012. Comparative analysis of overland flow models using finite volume schemes. Journal of Hydroinformatics, 14(1), 122–135. https://doi.org/10.2166/hydro.2011.077 | es_ES |
dc.description.references | European Union Copernicus Land Monitoring Service. 2018. European Union, Copernicus Land Monitoring Service. Eur. Environ. Agency. | es_ES |
dc.description.references | Fernández-Pato, J., Morales-Hernández, M., García-Navarro, P. 2018. Implicit finite volume simulation of 2D shallow water flows in flexible meshes. Computer Methods in Applied Mechanics and Engineering, 328, 1–25. https://doi.org/10.1016/j.cma.2017.08.050 | es_ES |
dc.description.references | Ferrer-Polo, F.J. 2000. Recomendaciones para el cálculo hidrometeorológico de avenidas. CEDEX. Centro de Estudios y Experimentación de Obras Públicas. | es_ES |
dc.description.references | Fraga, I., Cea, L., Puertas, J. 2013. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient used in distributed urban drainage models. Journal of Hydrology, 505, 266–275. https://doi.org/10.1016/j.jhydrol.2013.10.005 | es_ES |
dc.description.references | Fraga, I., Cea, L., Puertas, J. 2019. Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrological Processes, 33(1), 160–173. https://doi.org/10.1002/hyp.13319 | es_ES |
dc.description.references | Fraga, I., Cea, L., Puertas, J., Suárez, J., Jiménez, V., Jácome, A. 2016. Global sensitivity and GLUE-based uncertainty analysis of a 2D-1D dual urban drainage model. Journal of Hydrologic Engineering, 21(5), 1–11. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001335 | es_ES |
dc.description.references | Francés, F., Vélez, J.I., Vélez, J.J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1–2), 226–240. https://doi.org/10.1016/j.jhydrol.2006.06.032 | es_ES |
dc.description.references | García-Alén, G., García-Fonte, O., Cea, L., Pena, L., Puertas, J. 2021. Modelling Weirs in Two-Dimensional Shallow Water Models. Water, 13(16), 2152. https://doi.org/10.3390/w13162152 | es_ES |
dc.description.references | García-Alén, G., González-Cao, J., Fernández-Nóvoa, D., Gómez-Gesteira, M., Cea, L., Puertas, J. 2022. Analysis of two sources of variability of basin outflow hydrographs computed with the 2D shallow water model Iber: Digital Terrain Model and unstructured mesh size. Journal of Hydrology, 612, 128182. https://doi.org/10.1016/j.jhydrol.2022.128182 | es_ES |
dc.description.references | García-Feal, O., González-Cao, J., Gómez-Gesteira, M., Cea, L., Domínguez, J.M., Formella, A. 2018. An accelerated tool for flood modelling based on Iber. Water (Switzerland), 10(10), 1–23. https://doi.org/10.3390/w10101459 | es_ES |
dc.description.references | IGN-CNIG. 2021. Instituto Geográfico Nacional. Centro de Descargas Del CNIG. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp | es_ES |
dc.description.references | Kannan, N., Santhi, C., Williams, J.R., Arnold, J.G. 2007. Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods. Wiley InterScience, 2274(November 2008), 2267–2274. https://doi.org/10.1002/hyp.6811 | es_ES |
dc.description.references | Liang, D., Özgen, I., Hinkelmann, R., Xiao, Y., Chen, J.M. 2015. Shallow water simulation of overland flows in idealised catchments. Environmental Earth Sciences, 74(11), 7307–7318. https://doi.org/10.1007/s12665-015-4744-5 | es_ES |
dc.description.references | Marcos, S.R., Belén, M.C., Ernest, B., Irene, S., Arnau, A., Hélène, R., Romu, R. 2020. NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. Journal of Hydrologic Engineering, 25(9), 5020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979 | es_ES |
dc.description.references | Ministerio de Fomento; Dirección General de Carreteras. 2019. NORMA 5.2–IC de la Instrucción de carreteras, Drenaje superficial. Boletín Oficial del Estado, núm. 136, de 5 de junio de 2018, PP. 58028 a 58030. https://www.boe.es/eli/es/res/2018/03/26/(3) | es_ES |
dc.description.references | Ministerio de Medio Ambiente y Medio Rural y Marino. 2013. Mapa de Caudales Máximos (CAUMAX, v2.3). CEDEX. Centro de Estudios y Experimentación de Obras Públicas. | es_ES |
dc.description.references | Petaccia, G., Leporati, F., Torti, E. 2016. OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Computational Geosciences, 20(5), 1123–1132. https://doi.org/10.1007/s10596-016-9580-5 | es_ES |
dc.description.references | Refsgaard, J.C. 1997. Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1–4), 69–97. https://doi.org/10.1016/S0022-1694(96)03329-X | es_ES |
dc.description.references | Sánchez, F.J., Lastra, J. 2011. Guía metodológica para el desarrollo del Sistema Nacional de Cartografía de Zonas Inundables. Madrid, Ministerio de Medio Ambiente, y Medio Rural y Marino. | es_ES |
dc.description.references | Sanders, B.F., Schubert, J.E. 2019. PRIMo: Parallel raster inundation model. Advances in Water Resources, 126, 79–95. https://doi.org/10.1016/j.advwatres.2019.02.007 | es_ES |
dc.description.references | Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., Aragón-Hernández, J.L. 2021. Interpreting the Manning Roughness Coefficient in Overland Flow Simulations with Coupled Hydrological-Hydraulic Distributed Models. Water, 13(23), 3433. https://doi.org/10.3390/w13233433 | es_ES |
dc.description.references | Sanz-Ramos, M., Cea, L., Bladé, E., López-Gómez, D., Sañudo, E., García-Alén, G., Aragón-Hernández, J.L. 2022. Iber v3. Manual de referencia e interfaz de usuario de las nuevas implementaciones. Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE). https://doi.org/10.23967/iber.2022.01 | es_ES |
dc.description.references | Uber, M., Nord, G., Legout, C., Cea, L. 2021. How do modeling choices and erosion zone locations impact the representation of connectivity and the dynamics of suspended sediments in a multi-source soil erosion model? Earth Surf. Dynam., 9(1), 123–144. https://doi.org/10.5194/esurf-9-123-2021 | es_ES |
dc.description.references | Xia, X., Liang, Q., Ming, X. 2019. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132, 103392. https://doi.org/10.1016/j.advwatres.2019.103392 | es_ES |