Resumen:
|
[EN] The present investigation focuses on the
creation of a geopolymer, using pumice stone from Ecuador
as a precursor material. The chemical composition of the
pumice and the alkaline activation of the geopolymer with ...[+]
[EN] The present investigation focuses on the
creation of a geopolymer, using pumice stone from Ecuador
as a precursor material. The chemical composition of the
pumice and the alkaline activation of the geopolymer with
NaOH and Na2SiO3 were validated through a multi-criteria
analysis that was used to identify the best mine among the
ones located in Cotopaxi, Chimborazo, and Tungurahua
states. Through laboratory tests, it was obtained that the
best pumice stone had the presence of aluminum oxide and
silicon in its composition, as well as amorphous particles,
with a size of 40 to 50µm. The percentage of aluminum that
was found in the mines of Cotopaxi, Imbabura, and
Tungurahua states was 0.60%, 0.68%, and 1.50%
respectively. In the fineness modulus tests, it stands out that
more than 80% passes the 75µm sieve. In regards to the
activation of the geopolymer, the average resistance of the
deposits was Cotopaxi 22.60 MPa, Imbabura 23.03 MPa,
and Tungurahua 23.03 MPa. In the geopolymer concrete,
the average resistance values of each of the deposits were:
Cotopaxi 4.21 MPa, Imbabura 8.05 MPa, and Tungurahua
8.67 MPa. The multicriteria analysis showed that the best
option to create geopolymer concrete comes from the mine
located in Tungurahua. It should be noted that the increase
in NaOH concentration, maintaining the ratio of 2.4 in
geopolymer cubes between Na2SiO3/NaOH as an activating
solution, induces an increase in compressive strength. The
concrete made from the Tungurahua mine, made up of 50%
geopolymer and 50% aggregates. It is the one that showed
the best properties with a compressive strength of 16.16
MPa, cured in an oven for 24 hours and at a temperature of
80°C. The design of geopolymer concrete that replaces the
use of portland cement is the first step to reduce the
pollution produced by hydraulic cement.
[-]
|