Papavinasam, S.: Electrochemical polarization techniques for corrosion monitoring. In: Yang, L. (ed.) Techniques for Corrosion Monitoring, pp. 45–77. Woodhead Publishing, Sawston (2021). https://doi.org/10.1016/B978-0-08-103003-5.00003-5
Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: experimental measurement of polarisation curves of steel in concrete. Corros. Sci. 50, 357–364 (2008). https://doi.org/10.1016/j.corsci.2007.08.009
Martínez, I., Andrade, C.: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31, 545–554 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.007
[+]
Papavinasam, S.: Electrochemical polarization techniques for corrosion monitoring. In: Yang, L. (ed.) Techniques for Corrosion Monitoring, pp. 45–77. Woodhead Publishing, Sawston (2021). https://doi.org/10.1016/B978-0-08-103003-5.00003-5
Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: experimental measurement of polarisation curves of steel in concrete. Corros. Sci. 50, 357–364 (2008). https://doi.org/10.1016/j.corsci.2007.08.009
Martínez, I., Andrade, C.: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31, 545–554 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.007
Andrade, C., Martínez, I.: Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures. In: Maierhofer, C., Reinhardt, H.W., Dobmann, G. (eds.) Non-Destructive Evaluation of Reinforced Concrete Structures, vol. 2, pp. 284–316. Woodhead Publishing, Sawston (2010). https://doi.org/10.1016/j.cemconcomp.2009.05.007
Martínez, I., Andrade, C.: Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62, 932–942 (2011). https://doi.org/10.1002/maco.200905596
Stern, M., Geary, A.L.: Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957). https://doi.org/10.1149/1.2428496
González, J.A., Albéniz, J., Feliu, S.: Valores de la constante B del método de resistencia de polarización para veinte sistemas metal-medio diferentes. Rev. Met. 32, 10–17 (1996). https://doi.org/10.3989/revmetalm.1996.v32.i1.926
UNE 112072:2011 Spanish Standard, Laboratory Measurement of Corrosion Speed Using the Polarization Resistance Technique (2011)
Andrade, C., Alonso, C.: Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 37, 623–643 (2004). https://doi.org/10.1007/BF02483292
Andrade, C., Martínez, I., Alonso, C., Fullea, J.: New advanced electrochemical techniques for on site measurements of reinforcement corrosion. Mater. Constr. 51, 97–107 (2001). https://doi.org/10.3989/mc.2001.v51.i263-264.356
Scully, J.R.: Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56, 199–218 (2000). https://doi.org/10.5006/1.3280536
Glass, G.K., Page, C.L., Short, N.R., Yu, S.W.: An investigation of galvanostatic transient methods used to monitor the corrosion rate of steel in concrete. Corros. Sci. 35, 1585–1592 (1993). https://doi.org/10.1016/0010-938X(93)90388-W
Elsener, B., Wojtas, H., Böhni, H. Galvanostatic pulse measurements-rapid on site corrosion monitoring in Corrosion and corrosion protection of steel in concrete. In: Proceedings of International conference held at the University of Sheffield, 24–28 July 1994, vol. 1 (1994)
Walter, G.W.: Problems arising in the determination of accurate corrosion rates from polarization resistance measurements. Corros. Sci. 17, 983–993 (1977). https://doi.org/10.1016/S0010-938X(77)80013-9
Law, D.W., Millard, S.G., Bungey, J.H.: Galvanostatic pulse measurements of passive and active reinforcing steel in concrete. Corrosion 56, 48–56 (2000). https://doi.org/10.5006/1.3280522
Frølund, T., Jensen, M.F., Bassler, R. Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In: First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14–17 July, 2002 (2002)
Vedalakshmi, R., Balamurugan, L., Saraswathy, V., Kim, S.H., Ann, K.Y.: Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: laboratory vs field studies. KSCE J. Civ. Eng. 14, 867–877 (2010). https://doi.org/10.1007/s12205-010-1023-6
Xu, J., Yao, W.: Detecting the efficiency of cathodic protection in reinforced concrete by use of Galvanostatic pulse technique. In: Bao, Y., Tian, L., Gong, J. (eds.) Advanced Materials Research, vol. 177, pp. 584–589. Trans Tech Publications Ltd, Bäch (2011). https://doi.org/10.4028/www.scientific.net/AMR.177.584
Dou, Y.T., Hao, B.H., Meng, B., Xie, J., Dong, M.L., Zhang, A.L.: The study to the corrosion of reinforcing steel in concrete by using Galvanostatic Pulse Technique. Appl. Mech. Mater. 501, 916–919 (2014). https://doi.org/10.4028/www.scientific.net/AMM.501-504.916
Feliu, V., Gonzalez, J.A., Feliu, S.: Corrosion estimates from the transient response to a potential step. Corros. Sci. 49, 3241–3255 (2007). https://doi.org/10.1016/j.corsci.2007.03.004
Elsener, B., Klinghoffer, O., Frolund, T., Rislund, E., Schiegg, Y., Bohni, H.: Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In: Blankvoll, A. (ed) Proceeding of the International Conference on Repair of Concrete Structures, Norwegian Public Roads Administration, Svolvaer, Norway, pp. 391–400 (1997)
Glass, G.K., Page, C.L., Short, N.R., Zhang, J.Z.: The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corros. Sci. 39, 1657–1663 (1997). https://doi.org/10.1016/S0010-938X(97)00071-1
Andrade, C., Soler, L., Alonso, C., Novoa, X.R., Keddam, M.: The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance. Corros. Sci. 37, 2013–2023 (1995). https://doi.org/10.1016/0010-938X(95)00095-2
Newton, C.J., Sykes, J.M.: A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros. Sci. 28, 1051–1074 (1988). https://doi.org/10.1016/0010-938X(88)90101-1
Jin, M., Ma, Y., Zeng, H., Liu, J., Jiang, L., Yang, G., Gu, Y.: Developing a multi-element sensor to non-destructively monitor several fundamental parameters related to concrete durability. Sensors 20, 5607 (2020). https://doi.org/10.3390/s20195607
Rybalka, K.V., Beketaeva, L.A., Davydov, A.D.: Estimation of corrosion current by the analysis of polarization curves: electrochemical kinetics mode. Russ. J. Electrochem. 50, 108–113 (2014). https://doi.org/10.1134/S1023193514020025
Barnartt, S.: Two-point and three-point methods for the investigation of electrode reaction mechanisms. Electrochim. Acta 15, 1313–1324 (1970). https://doi.org/10.1016/0013-4686(70)80051-2
Beleevskii, V.S., Kudelin, Y.I.: Calculation of corrosion rate and Tafel constants from two or three values of polarization current of the same sign near corrosion potential. Zashch Met. 25, 80–85 (1989)
Jankowski, J., Juchniewicz, R.: A four-point method for corrosion rate determination. Corros. Sci. 20, 841–851 (1980). https://doi.org/10.1016/0010-938X(80)90118-3
Rocchini, G.: The determination of tafel slopes by the successive approximation method. Corros. Sci. 37, 987–1003 (1995). https://doi.org/10.1016/0010-938X(95)00009-9
Mansfeld, F.: Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros. Sci. 47, 3178–3186 (2005). https://doi.org/10.1016/j.corsci.2005.04.012
Beleevskii, V.S., Konev, K.A., Novosadov, V.V., Vasil’ev, V.Y.: Estimating corrosion current and tafel constants from the curvature of voltammetric curves near the free-corrosion potential. Prot. Met. 40, 566–569 (2004). https://doi.org/10.1023/B:PROM.0000049521.65336.25
Lakshminarayanan, V., Rajagopalan, S.R.: Applications of exponential relaxation methods for corrosion studies and corrosion rate measurement. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences, pp. 465–477. Springer (1986)
Gao, J., Wu, J., Li, J., Zhao, X.: Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. Ndt E Int. 44, 202–205 (2011). https://doi.org/10.1016/j.ndteint.2010.11.011
Fan, L., Bao, Y., Meng, W., Chen, G.: In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B: Eng. 165, 679–689 (2019). https://doi.org/10.1016/j.compositesb.2019.02.051
Andringa, M.M., Neikirk, D.P., Dickerson, N.P., Wood, S.L.: Unpowered wireless corrosion sensor for steel reinforced concrete. In: SENSORS, 2005 IEEE, p. 4. IEEE (2005). https://doi.org/10.1109/ICSENS.2005.1597659
Degala, S., Rizzo, P., Ramanathan, K., Harries, K.A.: Acoustic emission monitoring of CFRP reinforced concrete slabs. Constr. Build Mater. 23, 2016–2026 (2009). https://doi.org/10.1016/j.conbuildmat.2008.08.026
Mustapha, S., Lu, Y., Li, J., Ye, L.: Damage detection in rebar-reinforced concrete beams based on time reversal of guided waves. Struct. Health Monit. 13, 347–358 (2014). https://doi.org/10.1177/1475921714521268
Ramón, J.E., Gandía-Romero, J.M., Bataller, R., Alcañiz, M., Valcuende, M., Soto, J.: Potential step voltammetry: an approach to corrosion rate measurement of reinforcements in concrete. Cem. Concr. Compos. 110, 103590 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103590
Ramón, J.E.: Sistema de Sensores Embebidos para Monitorizar la Corrosión en Estructuras de Hormigón Armado. Fundamentos, Metodología y Aplicaciones, Ph.D. Thesis, Universitat Politècnica de València, València (Spain) (2018). https://doi.org/10.4995/Thesis/10251/111823
Ramón, J.E., Martínez-Ibernón, A., Gandía-Romero, J.M., Fraile, R., Bataller, R., Alcañiz, M., García-Breijo, E., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits. Electrochim. Acta 323, 134702 (2019). https://doi.org/10.1016/j.electacta.2019.134702
Martínez-Ibernón, A., Ramón, J.E., Gandía-Romero, J.M., Gasch, I., Valcuende, M., Alcañiz, M., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochim. Acta 328, 135111 (2019). https://doi.org/10.1016/j.electacta.2019.135111
Moreno, M., Morris, W., Alvarez, M.G., Duffó, G.S.: Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content. Corros. Sci. 46, 2681–2699 (2004). https://doi.org/10.1016/j.corsci.2004.03.013
Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 2: a polarisation model for corrosion evaluation of steel in concrete. Corros. Sci. 50, 3078–3086 (2008). https://doi.org/10.1016/j.corsci.2008.08.021
Alcañiz, M., Bataller, R., Gandía-Romero, J.M., Ramón, J.E., Soto, J., Valcuende, M.: Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado, invention patent No. ES2545669, Publication date 19 January 2016.
Feliu, S., González, J.A., Miranda, J.M., Feliu, V.: Possibilities and problems of in situ techniques for measuring steel corrosion rates in large reinforced concrete structures. Corros. Sci. 47, 217–238 (2005). https://doi.org/10.1016/j.corsci.2004.04.011
Feliu, S., Gonzalez, J.A., Andrade, C., Feliu, V.: The determination of the corrosion rate of steel in concrete by a non-stationary method. Corros. Sci. 26, 961–970 (1986). https://doi.org/10.1016/0010-938X(86)90086-7
Sagüés, A.A., Kranc, S.C., Moreno, E.I.: Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete. Electrochim. Acta 41, 1239–1243 (1996). https://doi.org/10.1016/0013-4686(95)00476-9
Sagüés, A.A., Kranc, S.C., Moreno, E.I.: An improved method for estimating polarization resistance from small-amplitude potentiodynamic scans in concrete. Corrosion 54, 20–28 (1998). https://doi.org/10.5006/1.3284824
Gonzalez, J.A., Miranda, J.M., Birbilis, N., Feliu, S.: Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages. Corrosion 61, 37–50 (2005). https://doi.org/10.5006/1.3278158
Bastidas, D.M., González, J.A., Feliu, S., Cobo, A., Miranda, J.M.: A quantitative study of concrete-embedded steel corrosion using potentiostatic pulses. Corrosion 63, 1094–1100 (2007). https://doi.org/10.5006/1.3278327
Hornbostel, K., Larsen, C.K., Geiker, M.R.: Relationship between concrete resistivity and corrosion rate–A literature review. Cem. Concr. Compos. 39, 60–72 (2013). https://doi.org/10.1016/j.cemconcomp.2013.03.019
Qian, S., Zhang, J., Qu, D.: Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures. Cem. Concr. Compos. 28, 685–695 (2006). https://doi.org/10.1016/j.cemconcomp.2006.05.010
Ramón, J.E., Martínez, I., Gandía-Romero, J.M., Soto, J.: An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors 21, 2481 (2021). https://doi.org/10.3390/s21072481
ASTM G59–97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International, West Conshohocken, PA (2020). http://www.astm.org/cgi-bin/resolver.cgi?G59. Accessed 8 Feb 2022.
Poursaee, A.: Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim Acta 55, 1200–1206 (2010). https://doi.org/10.1016/j.electacta.2009.10.004
ASTM G5–14e1: Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. ASTM International, West Conshohocken, PA (2014). http://www.astm.org/cgi-bin/resolver.cgi?G5. Accessed 8 Feb 2022.
Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M.P., Park, Y.S.: Surface-oxide growth at platinum electrodes in aqueous H2SO4: reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim. Acta 49, 1451–1459 (2004). https://doi.org/10.1016/j.electacta.2003.11.008
Cherevko, S., Topalov, A.A., Zeradjanin, A.R., Katsounaros, I., Mayrhofer, K.J.J.: Gold dissolution: towards understanding of noble metal corrosion. Rsc Adv. 3, 16516–16527 (2013). https://doi.org/10.1039/C3RA42684J
Joiret, S., Keddam, M., Novoa, X.R., Perez, M.C., Rangel, C., Takenouti, H.: Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem. Concr. Compos. 24, 7–15 (2002). https://doi.org/10.1016/S0958-9465(01)00022-1
Sánchez, M., Gregori, J., Alonso, C., García-Jareño, J.J., Takenouti, H., Vicente, F.: Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim. Acta 52, 7634–7641 (2007). https://doi.org/10.1016/j.electacta.2007.02.012
Liu, X., MacDonald, D.D., Wang, M., Xu, Y.: Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution. Electrochim. Acta 366, 137437 (2021). https://doi.org/10.1016/j.electacta.2020.137437
Byfors, K.: Influence of silica fume and flyash on chloride diffusion and pH values in cement paste. Cem. Concr. Res. 17, 115–130 (1987). https://doi.org/10.1016/0008-8846(87)90066-4
Osmanovic, Z., Haračić, N., Zelić, J.: Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts. Cem. Concr. Compos. 91, 189–197 (2018). https://doi.org/10.1016/j.cemconcomp.2018.05.006
Andrade, C., Keddam, M., Nóvoa, X.R., Pérez, M.C., Rangel, C.M., Takenouti, H.: Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry. Electrochim. Acta 46, 3905–3912 (2001). https://doi.org/10.1016/S0013-4686(01)00678-8
Wang, Y., Liu, C., Wang, Y., Li, Q., Yan, B.: Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment. Electrochim. Acta 331, 135376 (2020). https://doi.org/10.1016/j.electacta.2019.135376
Vetter, K.J., Schultze, J.W.: The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4: Part II. Galvanostatic pulse measurements and the model of oxide growth. J. Electroanal. Chem. Interfacial Electrochem. 34, 141–158 (1972). https://doi.org/10.1016/S0022-0728(72)80510-2
ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA (2015).
Angst, U., Elsener, B., Larsen, C.K., Vennesland, Ø.: Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion. Electrochim. Acta 56, 5877–5889 (2011). https://doi.org/10.1016/j.electacta.2011.04.124
Koga, G.Y., Albert, B., Roche, V., Nogueira, R.P.: A comparative study of mild steel passivation embedded in Belite-Ye’elimite-Ferrite and Porland cement mortars. Electrochim. Acta 261, 66–77 (2018). https://doi.org/10.1016/j.electacta.2017.12.128
Ha, T.H., Muralidharan, S., Bae, J.H., Ha, Y.C., Lee, H.G., Park, K.W., Kim, D.K.: Effect of unburnt carbon on the corrosion performance of fly ash cement mortar. Constr. Build. Mater. 19, 509–515 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.005
Nguyen, Q.D., Castel, A.: Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cem. Concr. Res. 132, 106051 (2020). https://doi.org/10.1016/j.cemconres.2020.106051
Poursaee, A.: Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern-Geary constant of reinforcing steel in concrete. Cem. Concr. Res. 40, 1451–1458 (2010). https://doi.org/10.1016/j.cemconres.2010.04.006
Vedalakshmi, R., Thangavel, K.: Reliability of electrochemical techniques to predict the corrosion rate of steel in concrete structures. Arab. J. Sci. Eng. 36, 769–783 (2011). https://doi.org/10.1007/s13369-011-0082-4
[-]