- -

Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel

Mostrar el registro completo del ítem

Ramón, JE.; Martínez, I.; Gandía-Romero, JM.; Soto Camino, J. (2022). Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel. Journal of Nondestructive Evaluation. 41:1-25. https://doi.org/10.1007/s10921-022-00903-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191982

Ficheros en el ítem

Metadatos del ítem

Título: Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel
Autor: Ramón, José Enrique Martínez, Isabel Gandía-Romero, Jose M. Soto Camino, Juan
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Gestión en la Edificación - Escola Tècnica Superior de Gestió en l'Edificació
Fecha difusión:
Resumen:
[EN] Potential step voltammetry (PSV) was introduced in earlier works as an advantageous alternative to traditional methods for measuring corrosion rate in reinforced concrete. The present study aims to improve PSV to ...[+]
Palabras clave: Non-destructive technique , Ohmic drop , Potential step voltammetry , Reinforced concrete , Steel corrosion
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Nondestructive Evaluation. (issn: 0195-9298 )
DOI: 10.1007/s10921-022-00903-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10921-022-00903-z
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C21/ES/MONITORIZACION INTELIGENTE PARA REDUCIR LA INCERTIDUMBRE EN LA VIDA UTIL: SENSORES DE CORROSION POTENCIOSTATICOS/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C21/ES/MONITORIZACION INTELIGENTE PARA REDUCIR LA INCERTIDUMBRE EN LA VIDA UTIL: SENSORES DE CORROSION POTENCIOSTATICOS/
info:eu-repo/grantAgreement/UPV-VIN//SP20180245//Lengua Electrónica Voltamétrica para el control de durabilidad en hormigones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C22/ES/MONITOREO INTELIGENTE PARA REDUCIR INCERTIDUMBRES EN LA PREDICCION DE LA VIDA UTIL: SENSORES DE CORROSION BASADOS EN SISTEMAS DE CONTROL DE CORRIENTE/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/MECD//FPU13%2F00911/ES/FPU13%2F00911/
info:eu-repo/grantAgreement/UPV//SP20180245/
info:eu-repo/grantAgreement/MECD//FPU13%2F00911//FPU13/00911/
info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-3-R//Durabilidad y vida útil del hormigón de muy alto rendimiento/
[-]
Agradecimientos:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the pre-doctoral scholarship granted to Jose Enrique Ramon Zamora by the Spanish Ministry of Science and ...[+]
Tipo: Artículo

References

Papavinasam, S.: Electrochemical polarization techniques for corrosion monitoring. In: Yang, L. (ed.) Techniques for Corrosion Monitoring, pp. 45–77. Woodhead Publishing, Sawston (2021). https://doi.org/10.1016/B978-0-08-103003-5.00003-5

Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: experimental measurement of polarisation curves of steel in concrete. Corros. Sci. 50, 357–364 (2008). https://doi.org/10.1016/j.corsci.2007.08.009

Martínez, I., Andrade, C.: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31, 545–554 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.007 [+]
Papavinasam, S.: Electrochemical polarization techniques for corrosion monitoring. In: Yang, L. (ed.) Techniques for Corrosion Monitoring, pp. 45–77. Woodhead Publishing, Sawston (2021). https://doi.org/10.1016/B978-0-08-103003-5.00003-5

Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: experimental measurement of polarisation curves of steel in concrete. Corros. Sci. 50, 357–364 (2008). https://doi.org/10.1016/j.corsci.2007.08.009

Martínez, I., Andrade, C.: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31, 545–554 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.007

Andrade, C., Martínez, I.: Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures. In: Maierhofer, C., Reinhardt, H.W., Dobmann, G. (eds.) Non-Destructive Evaluation of Reinforced Concrete Structures, vol. 2, pp. 284–316. Woodhead Publishing, Sawston (2010). https://doi.org/10.1016/j.cemconcomp.2009.05.007

Martínez, I., Andrade, C.: Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62, 932–942 (2011). https://doi.org/10.1002/maco.200905596

Stern, M., Geary, A.L.: Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957). https://doi.org/10.1149/1.2428496

González, J.A., Albéniz, J., Feliu, S.: Valores de la constante B del método de resistencia de polarización para veinte sistemas metal-medio diferentes. Rev. Met. 32, 10–17 (1996). https://doi.org/10.3989/revmetalm.1996.v32.i1.926

UNE 112072:2011 Spanish Standard, Laboratory Measurement of Corrosion Speed Using the Polarization Resistance Technique (2011)

Andrade, C., Alonso, C.: Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 37, 623–643 (2004). https://doi.org/10.1007/BF02483292

Andrade, C., Martínez, I., Alonso, C., Fullea, J.: New advanced electrochemical techniques for on site measurements of reinforcement corrosion. Mater. Constr. 51, 97–107 (2001). https://doi.org/10.3989/mc.2001.v51.i263-264.356

Scully, J.R.: Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56, 199–218 (2000). https://doi.org/10.5006/1.3280536

Glass, G.K., Page, C.L., Short, N.R., Yu, S.W.: An investigation of galvanostatic transient methods used to monitor the corrosion rate of steel in concrete. Corros. Sci. 35, 1585–1592 (1993). https://doi.org/10.1016/0010-938X(93)90388-W

Elsener, B., Wojtas, H., Böhni, H. Galvanostatic pulse measurements-rapid on site corrosion monitoring in Corrosion and corrosion protection of steel in concrete. In: Proceedings of International conference held at the University of Sheffield, 24–28 July 1994, vol. 1 (1994)

Walter, G.W.: Problems arising in the determination of accurate corrosion rates from polarization resistance measurements. Corros. Sci. 17, 983–993 (1977). https://doi.org/10.1016/S0010-938X(77)80013-9

Law, D.W., Millard, S.G., Bungey, J.H.: Galvanostatic pulse measurements of passive and active reinforcing steel in concrete. Corrosion 56, 48–56 (2000). https://doi.org/10.5006/1.3280522

Frølund, T., Jensen, M.F., Bassler, R. Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In: First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14–17 July, 2002 (2002)

Vedalakshmi, R., Balamurugan, L., Saraswathy, V., Kim, S.H., Ann, K.Y.: Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: laboratory vs field studies. KSCE J. Civ. Eng. 14, 867–877 (2010). https://doi.org/10.1007/s12205-010-1023-6

Xu, J., Yao, W.: Detecting the efficiency of cathodic protection in reinforced concrete by use of Galvanostatic pulse technique. In: Bao, Y., Tian, L., Gong, J. (eds.) Advanced Materials Research, vol. 177, pp. 584–589. Trans Tech Publications Ltd, Bäch (2011). https://doi.org/10.4028/www.scientific.net/AMR.177.584

Dou, Y.T., Hao, B.H., Meng, B., Xie, J., Dong, M.L., Zhang, A.L.: The study to the corrosion of reinforcing steel in concrete by using Galvanostatic Pulse Technique. Appl. Mech. Mater. 501, 916–919 (2014). https://doi.org/10.4028/www.scientific.net/AMM.501-504.916

Feliu, V., Gonzalez, J.A., Feliu, S.: Corrosion estimates from the transient response to a potential step. Corros. Sci. 49, 3241–3255 (2007). https://doi.org/10.1016/j.corsci.2007.03.004

Elsener, B., Klinghoffer, O., Frolund, T., Rislund, E., Schiegg, Y., Bohni, H.: Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In: Blankvoll, A. (ed) Proceeding of the International Conference on Repair of Concrete Structures, Norwegian Public Roads Administration, Svolvaer, Norway, pp. 391–400 (1997)

Glass, G.K., Page, C.L., Short, N.R., Zhang, J.Z.: The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corros. Sci. 39, 1657–1663 (1997). https://doi.org/10.1016/S0010-938X(97)00071-1

Andrade, C., Soler, L., Alonso, C., Novoa, X.R., Keddam, M.: The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance. Corros. Sci. 37, 2013–2023 (1995). https://doi.org/10.1016/0010-938X(95)00095-2

Newton, C.J., Sykes, J.M.: A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros. Sci. 28, 1051–1074 (1988). https://doi.org/10.1016/0010-938X(88)90101-1

Jin, M., Ma, Y., Zeng, H., Liu, J., Jiang, L., Yang, G., Gu, Y.: Developing a multi-element sensor to non-destructively monitor several fundamental parameters related to concrete durability. Sensors 20, 5607 (2020). https://doi.org/10.3390/s20195607

Rybalka, K.V., Beketaeva, L.A., Davydov, A.D.: Estimation of corrosion current by the analysis of polarization curves: electrochemical kinetics mode. Russ. J. Electrochem. 50, 108–113 (2014). https://doi.org/10.1134/S1023193514020025

Barnartt, S.: Two-point and three-point methods for the investigation of electrode reaction mechanisms. Electrochim. Acta 15, 1313–1324 (1970). https://doi.org/10.1016/0013-4686(70)80051-2

Beleevskii, V.S., Kudelin, Y.I.: Calculation of corrosion rate and Tafel constants from two or three values of polarization current of the same sign near corrosion potential. Zashch Met. 25, 80–85 (1989)

Jankowski, J., Juchniewicz, R.: A four-point method for corrosion rate determination. Corros. Sci. 20, 841–851 (1980). https://doi.org/10.1016/0010-938X(80)90118-3

Rocchini, G.: The determination of tafel slopes by the successive approximation method. Corros. Sci. 37, 987–1003 (1995). https://doi.org/10.1016/0010-938X(95)00009-9

Mansfeld, F.: Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros. Sci. 47, 3178–3186 (2005). https://doi.org/10.1016/j.corsci.2005.04.012

Beleevskii, V.S., Konev, K.A., Novosadov, V.V., Vasil’ev, V.Y.: Estimating corrosion current and tafel constants from the curvature of voltammetric curves near the free-corrosion potential. Prot. Met. 40, 566–569 (2004). https://doi.org/10.1023/B:PROM.0000049521.65336.25

Lakshminarayanan, V., Rajagopalan, S.R.: Applications of exponential relaxation methods for corrosion studies and corrosion rate measurement. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences, pp. 465–477. Springer (1986)

Gao, J., Wu, J., Li, J., Zhao, X.: Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. Ndt E Int. 44, 202–205 (2011). https://doi.org/10.1016/j.ndteint.2010.11.011

Fan, L., Bao, Y., Meng, W., Chen, G.: In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B: Eng. 165, 679–689 (2019). https://doi.org/10.1016/j.compositesb.2019.02.051

Andringa, M.M., Neikirk, D.P., Dickerson, N.P., Wood, S.L.: Unpowered wireless corrosion sensor for steel reinforced concrete. In: SENSORS, 2005 IEEE, p. 4. IEEE (2005). https://doi.org/10.1109/ICSENS.2005.1597659

Degala, S., Rizzo, P., Ramanathan, K., Harries, K.A.: Acoustic emission monitoring of CFRP reinforced concrete slabs. Constr. Build Mater. 23, 2016–2026 (2009). https://doi.org/10.1016/j.conbuildmat.2008.08.026

Mustapha, S., Lu, Y., Li, J., Ye, L.: Damage detection in rebar-reinforced concrete beams based on time reversal of guided waves. Struct. Health Monit. 13, 347–358 (2014). https://doi.org/10.1177/1475921714521268

Ramón, J.E., Gandía-Romero, J.M., Bataller, R., Alcañiz, M., Valcuende, M., Soto, J.: Potential step voltammetry: an approach to corrosion rate measurement of reinforcements in concrete. Cem. Concr. Compos. 110, 103590 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103590

Ramón, J.E.: Sistema de Sensores Embebidos para Monitorizar la Corrosión en Estructuras de Hormigón Armado. Fundamentos, Metodología y Aplicaciones, Ph.D. Thesis, Universitat Politècnica de València, València (Spain) (2018). https://doi.org/10.4995/Thesis/10251/111823

Ramón, J.E., Martínez-Ibernón, A., Gandía-Romero, J.M., Fraile, R., Bataller, R., Alcañiz, M., García-Breijo, E., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits. Electrochim. Acta 323, 134702 (2019). https://doi.org/10.1016/j.electacta.2019.134702

Martínez-Ibernón, A., Ramón, J.E., Gandía-Romero, J.M., Gasch, I., Valcuende, M., Alcañiz, M., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochim. Acta 328, 135111 (2019). https://doi.org/10.1016/j.electacta.2019.135111

Moreno, M., Morris, W., Alvarez, M.G., Duffó, G.S.: Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content. Corros. Sci. 46, 2681–2699 (2004). https://doi.org/10.1016/j.corsci.2004.03.013

Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 2: a polarisation model for corrosion evaluation of steel in concrete. Corros. Sci. 50, 3078–3086 (2008). https://doi.org/10.1016/j.corsci.2008.08.021

Alcañiz, M., Bataller, R., Gandía-Romero, J.M., Ramón, J.E., Soto, J., Valcuende, M.: Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado, invention patent No. ES2545669, Publication date 19 January 2016.

Feliu, S., González, J.A., Miranda, J.M., Feliu, V.: Possibilities and problems of in situ techniques for measuring steel corrosion rates in large reinforced concrete structures. Corros. Sci. 47, 217–238 (2005). https://doi.org/10.1016/j.corsci.2004.04.011

Feliu, S., Gonzalez, J.A., Andrade, C., Feliu, V.: The determination of the corrosion rate of steel in concrete by a non-stationary method. Corros. Sci. 26, 961–970 (1986). https://doi.org/10.1016/0010-938X(86)90086-7

Sagüés, A.A., Kranc, S.C., Moreno, E.I.: Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete. Electrochim. Acta 41, 1239–1243 (1996). https://doi.org/10.1016/0013-4686(95)00476-9

Sagüés, A.A., Kranc, S.C., Moreno, E.I.: An improved method for estimating polarization resistance from small-amplitude potentiodynamic scans in concrete. Corrosion 54, 20–28 (1998). https://doi.org/10.5006/1.3284824

Gonzalez, J.A., Miranda, J.M., Birbilis, N., Feliu, S.: Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages. Corrosion 61, 37–50 (2005). https://doi.org/10.5006/1.3278158

Bastidas, D.M., González, J.A., Feliu, S., Cobo, A., Miranda, J.M.: A quantitative study of concrete-embedded steel corrosion using potentiostatic pulses. Corrosion 63, 1094–1100 (2007). https://doi.org/10.5006/1.3278327

Hornbostel, K., Larsen, C.K., Geiker, M.R.: Relationship between concrete resistivity and corrosion rate–A literature review. Cem. Concr. Compos. 39, 60–72 (2013). https://doi.org/10.1016/j.cemconcomp.2013.03.019

Qian, S., Zhang, J., Qu, D.: Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures. Cem. Concr. Compos. 28, 685–695 (2006). https://doi.org/10.1016/j.cemconcomp.2006.05.010

Ramón, J.E., Martínez, I., Gandía-Romero, J.M., Soto, J.: An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors 21, 2481 (2021). https://doi.org/10.3390/s21072481

ASTM G59–97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International, West Conshohocken, PA (2020). http://www.astm.org/cgi-bin/resolver.cgi?G59. Accessed 8 Feb 2022.

Poursaee, A.: Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim Acta 55, 1200–1206 (2010). https://doi.org/10.1016/j.electacta.2009.10.004

ASTM G5–14e1: Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. ASTM International, West Conshohocken, PA (2014). http://www.astm.org/cgi-bin/resolver.cgi?G5. Accessed 8 Feb 2022.

Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M.P., Park, Y.S.: Surface-oxide growth at platinum electrodes in aqueous H2SO4: reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim. Acta 49, 1451–1459 (2004). https://doi.org/10.1016/j.electacta.2003.11.008

Cherevko, S., Topalov, A.A., Zeradjanin, A.R., Katsounaros, I., Mayrhofer, K.J.J.: Gold dissolution: towards understanding of noble metal corrosion. Rsc Adv. 3, 16516–16527 (2013). https://doi.org/10.1039/C3RA42684J

Joiret, S., Keddam, M., Novoa, X.R., Perez, M.C., Rangel, C., Takenouti, H.: Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem. Concr. Compos. 24, 7–15 (2002). https://doi.org/10.1016/S0958-9465(01)00022-1

Sánchez, M., Gregori, J., Alonso, C., García-Jareño, J.J., Takenouti, H., Vicente, F.: Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim. Acta 52, 7634–7641 (2007). https://doi.org/10.1016/j.electacta.2007.02.012

Liu, X., MacDonald, D.D., Wang, M., Xu, Y.: Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution. Electrochim. Acta 366, 137437 (2021). https://doi.org/10.1016/j.electacta.2020.137437

Byfors, K.: Influence of silica fume and flyash on chloride diffusion and pH values in cement paste. Cem. Concr. Res. 17, 115–130 (1987). https://doi.org/10.1016/0008-8846(87)90066-4

Osmanovic, Z., Haračić, N., Zelić, J.: Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts. Cem. Concr. Compos. 91, 189–197 (2018). https://doi.org/10.1016/j.cemconcomp.2018.05.006

Andrade, C., Keddam, M., Nóvoa, X.R., Pérez, M.C., Rangel, C.M., Takenouti, H.: Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry. Electrochim. Acta 46, 3905–3912 (2001). https://doi.org/10.1016/S0013-4686(01)00678-8

Wang, Y., Liu, C., Wang, Y., Li, Q., Yan, B.: Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment. Electrochim. Acta 331, 135376 (2020). https://doi.org/10.1016/j.electacta.2019.135376

Vetter, K.J., Schultze, J.W.: The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4: Part II. Galvanostatic pulse measurements and the model of oxide growth. J. Electroanal. Chem. Interfacial Electrochem. 34, 141–158 (1972). https://doi.org/10.1016/S0022-0728(72)80510-2

ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA (2015).

Angst, U., Elsener, B., Larsen, C.K., Vennesland, Ø.: Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion. Electrochim. Acta 56, 5877–5889 (2011). https://doi.org/10.1016/j.electacta.2011.04.124

Koga, G.Y., Albert, B., Roche, V., Nogueira, R.P.: A comparative study of mild steel passivation embedded in Belite-Ye’elimite-Ferrite and Porland cement mortars. Electrochim. Acta 261, 66–77 (2018). https://doi.org/10.1016/j.electacta.2017.12.128

Ha, T.H., Muralidharan, S., Bae, J.H., Ha, Y.C., Lee, H.G., Park, K.W., Kim, D.K.: Effect of unburnt carbon on the corrosion performance of fly ash cement mortar. Constr. Build. Mater. 19, 509–515 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.005

Nguyen, Q.D., Castel, A.: Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cem. Concr. Res. 132, 106051 (2020). https://doi.org/10.1016/j.cemconres.2020.106051

Poursaee, A.: Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern-Geary constant of reinforcing steel in concrete. Cem. Concr. Res. 40, 1451–1458 (2010). https://doi.org/10.1016/j.cemconres.2010.04.006

Vedalakshmi, R., Thangavel, K.: Reliability of electrochemical techniques to predict the corrosion rate of steel in concrete structures. Arab. J. Sci. Eng. 36, 769–783 (2011). https://doi.org/10.1007/s13369-011-0082-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem