Mostrar el registro sencillo del ítem
dc.contributor.author | Ramón, José Enrique | es_ES |
dc.contributor.author | Martínez, Isabel | es_ES |
dc.contributor.author | Gandía-Romero, Jose M. | es_ES |
dc.contributor.author | Soto Camino, Juan | es_ES |
dc.date.accessioned | 2023-02-21T19:02:06Z | |
dc.date.available | 2023-02-21T19:02:06Z | |
dc.date.issued | 2022-12 | es_ES |
dc.identifier.issn | 0195-9298 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/191982 | |
dc.description.abstract | [EN] Potential step voltammetry (PSV) was introduced in earlier works as an advantageous alternative to traditional methods for measuring corrosion rate in reinforced concrete. The present study aims to improve PSV to maximize its applicability in corrosion rate monitoring, that is, beyond the narrowly-defined steel¿concrete systems in which was initially validated. It was therefore identified necessary to address the most suitable PSV pulse amplitudes to accurately obtain the Tafel lines and, therefore, corrosion rate in steel-mortar systems with well-differentiated ohmic drop. PSV findings were compared to reference methods, i.e. Tafel intersection and linear polarization resistance. As a novelty, we propose a procedure to improve the reliability of the PSV-determined Tafel lines, which is based on three protocols (P1, P2 and P3). P1 consists of a specific pulse sequence to accurately characterize the morphology of the polarization curve without disturbing the system. P2 consists of two short pulses for determining the ohmic drop compensation factor. Finally, P3 consists of a simple calculation procedure to accurately adjust the PSV pulse amplitudes (V) to the steel¿concrete system assessed, thus obviating the need for preset values and, therefore, ensuring accurate corrosion rate results. The procedure proposed is intended to improve PSV with a view to its consolidation as a reliable tool for the unsupervised monitoring of real structures. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the pre-doctoral scholarship granted to Jose Enrique Ramon Zamora by the Spanish Ministry of Science and Innovation (Grant Number FPU13/00911). We would also like to acknowledge financial support from the Spanish Ministry of Science and Innovation through the national programs of oriented research, development and innovation to societal challenges (Project Numbers BIA2016-78460-C33-R, PID2020-119744RB-C21 and PID2020-119744RB-C22). To the Universitat Politecnica de Valencia for the financial support in the project "Ayudas a Primeros Proyectos de Investigacion (PAID-0618)"-SP20180245. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Nondestructive Evaluation | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Non-destructive technique | es_ES |
dc.subject | Ohmic drop | es_ES |
dc.subject | Potential step voltammetry | es_ES |
dc.subject | Reinforced concrete | es_ES |
dc.subject | Steel corrosion | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10921-022-00903-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C21/ES/MONITORIZACION INTELIGENTE PARA REDUCIR LA INCERTIDUMBRE EN LA VIDA UTIL: SENSORES DE CORROSION POTENCIOSTATICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV-VIN//SP20180245//Lengua Electrónica Voltamétrica para el control de durabilidad en hormigones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C22/ES/MONITOREO INTELIGENTE PARA REDUCIR INCERTIDUMBRES EN LA PREDICCION DE LA VIDA UTIL: SENSORES DE CORROSION BASADOS EN SISTEMAS DE CONTROL DE CORRIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F00911/ES/FPU13%2F00911/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180245/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F00911//FPU13/00911/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-3-R//Durabilidad y vida útil del hormigón de muy alto rendimiento/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Gestión en la Edificación - Escola Tècnica Superior de Gestió en l'Edificació | es_ES |
dc.description.bibliographicCitation | Ramón, JE.; Martínez, I.; Gandía-Romero, JM.; Soto Camino, J. (2022). Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel. Journal of Nondestructive Evaluation. 41:1-25. https://doi.org/10.1007/s10921-022-00903-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10921-022-00903-z | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.relation.pasarela | S\473227 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Papavinasam, S.: Electrochemical polarization techniques for corrosion monitoring. In: Yang, L. (ed.) Techniques for Corrosion Monitoring, pp. 45–77. Woodhead Publishing, Sawston (2021). https://doi.org/10.1016/B978-0-08-103003-5.00003-5 | es_ES |
dc.description.references | Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: experimental measurement of polarisation curves of steel in concrete. Corros. Sci. 50, 357–364 (2008). https://doi.org/10.1016/j.corsci.2007.08.009 | es_ES |
dc.description.references | Martínez, I., Andrade, C.: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31, 545–554 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.007 | es_ES |
dc.description.references | Andrade, C., Martínez, I.: Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures. In: Maierhofer, C., Reinhardt, H.W., Dobmann, G. (eds.) Non-Destructive Evaluation of Reinforced Concrete Structures, vol. 2, pp. 284–316. Woodhead Publishing, Sawston (2010). https://doi.org/10.1016/j.cemconcomp.2009.05.007 | es_ES |
dc.description.references | Martínez, I., Andrade, C.: Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62, 932–942 (2011). https://doi.org/10.1002/maco.200905596 | es_ES |
dc.description.references | Stern, M., Geary, A.L.: Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957). https://doi.org/10.1149/1.2428496 | es_ES |
dc.description.references | González, J.A., Albéniz, J., Feliu, S.: Valores de la constante B del método de resistencia de polarización para veinte sistemas metal-medio diferentes. Rev. Met. 32, 10–17 (1996). https://doi.org/10.3989/revmetalm.1996.v32.i1.926 | es_ES |
dc.description.references | UNE 112072:2011 Spanish Standard, Laboratory Measurement of Corrosion Speed Using the Polarization Resistance Technique (2011) | es_ES |
dc.description.references | Andrade, C., Alonso, C.: Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 37, 623–643 (2004). https://doi.org/10.1007/BF02483292 | es_ES |
dc.description.references | Andrade, C., Martínez, I., Alonso, C., Fullea, J.: New advanced electrochemical techniques for on site measurements of reinforcement corrosion. Mater. Constr. 51, 97–107 (2001). https://doi.org/10.3989/mc.2001.v51.i263-264.356 | es_ES |
dc.description.references | Scully, J.R.: Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56, 199–218 (2000). https://doi.org/10.5006/1.3280536 | es_ES |
dc.description.references | Glass, G.K., Page, C.L., Short, N.R., Yu, S.W.: An investigation of galvanostatic transient methods used to monitor the corrosion rate of steel in concrete. Corros. Sci. 35, 1585–1592 (1993). https://doi.org/10.1016/0010-938X(93)90388-W | es_ES |
dc.description.references | Elsener, B., Wojtas, H., Böhni, H. Galvanostatic pulse measurements-rapid on site corrosion monitoring in Corrosion and corrosion protection of steel in concrete. In: Proceedings of International conference held at the University of Sheffield, 24–28 July 1994, vol. 1 (1994) | es_ES |
dc.description.references | Walter, G.W.: Problems arising in the determination of accurate corrosion rates from polarization resistance measurements. Corros. Sci. 17, 983–993 (1977). https://doi.org/10.1016/S0010-938X(77)80013-9 | es_ES |
dc.description.references | Law, D.W., Millard, S.G., Bungey, J.H.: Galvanostatic pulse measurements of passive and active reinforcing steel in concrete. Corrosion 56, 48–56 (2000). https://doi.org/10.5006/1.3280522 | es_ES |
dc.description.references | Frølund, T., Jensen, M.F., Bassler, R. Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In: First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14–17 July, 2002 (2002) | es_ES |
dc.description.references | Vedalakshmi, R., Balamurugan, L., Saraswathy, V., Kim, S.H., Ann, K.Y.: Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: laboratory vs field studies. KSCE J. Civ. Eng. 14, 867–877 (2010). https://doi.org/10.1007/s12205-010-1023-6 | es_ES |
dc.description.references | Xu, J., Yao, W.: Detecting the efficiency of cathodic protection in reinforced concrete by use of Galvanostatic pulse technique. In: Bao, Y., Tian, L., Gong, J. (eds.) Advanced Materials Research, vol. 177, pp. 584–589. Trans Tech Publications Ltd, Bäch (2011). https://doi.org/10.4028/www.scientific.net/AMR.177.584 | es_ES |
dc.description.references | Dou, Y.T., Hao, B.H., Meng, B., Xie, J., Dong, M.L., Zhang, A.L.: The study to the corrosion of reinforcing steel in concrete by using Galvanostatic Pulse Technique. Appl. Mech. Mater. 501, 916–919 (2014). https://doi.org/10.4028/www.scientific.net/AMM.501-504.916 | es_ES |
dc.description.references | Feliu, V., Gonzalez, J.A., Feliu, S.: Corrosion estimates from the transient response to a potential step. Corros. Sci. 49, 3241–3255 (2007). https://doi.org/10.1016/j.corsci.2007.03.004 | es_ES |
dc.description.references | Elsener, B., Klinghoffer, O., Frolund, T., Rislund, E., Schiegg, Y., Bohni, H.: Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In: Blankvoll, A. (ed) Proceeding of the International Conference on Repair of Concrete Structures, Norwegian Public Roads Administration, Svolvaer, Norway, pp. 391–400 (1997) | es_ES |
dc.description.references | Glass, G.K., Page, C.L., Short, N.R., Zhang, J.Z.: The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corros. Sci. 39, 1657–1663 (1997). https://doi.org/10.1016/S0010-938X(97)00071-1 | es_ES |
dc.description.references | Andrade, C., Soler, L., Alonso, C., Novoa, X.R., Keddam, M.: The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance. Corros. Sci. 37, 2013–2023 (1995). https://doi.org/10.1016/0010-938X(95)00095-2 | es_ES |
dc.description.references | Newton, C.J., Sykes, J.M.: A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros. Sci. 28, 1051–1074 (1988). https://doi.org/10.1016/0010-938X(88)90101-1 | es_ES |
dc.description.references | Jin, M., Ma, Y., Zeng, H., Liu, J., Jiang, L., Yang, G., Gu, Y.: Developing a multi-element sensor to non-destructively monitor several fundamental parameters related to concrete durability. Sensors 20, 5607 (2020). https://doi.org/10.3390/s20195607 | es_ES |
dc.description.references | Rybalka, K.V., Beketaeva, L.A., Davydov, A.D.: Estimation of corrosion current by the analysis of polarization curves: electrochemical kinetics mode. Russ. J. Electrochem. 50, 108–113 (2014). https://doi.org/10.1134/S1023193514020025 | es_ES |
dc.description.references | Barnartt, S.: Two-point and three-point methods for the investigation of electrode reaction mechanisms. Electrochim. Acta 15, 1313–1324 (1970). https://doi.org/10.1016/0013-4686(70)80051-2 | es_ES |
dc.description.references | Beleevskii, V.S., Kudelin, Y.I.: Calculation of corrosion rate and Tafel constants from two or three values of polarization current of the same sign near corrosion potential. Zashch Met. 25, 80–85 (1989) | es_ES |
dc.description.references | Jankowski, J., Juchniewicz, R.: A four-point method for corrosion rate determination. Corros. Sci. 20, 841–851 (1980). https://doi.org/10.1016/0010-938X(80)90118-3 | es_ES |
dc.description.references | Rocchini, G.: The determination of tafel slopes by the successive approximation method. Corros. Sci. 37, 987–1003 (1995). https://doi.org/10.1016/0010-938X(95)00009-9 | es_ES |
dc.description.references | Mansfeld, F.: Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros. Sci. 47, 3178–3186 (2005). https://doi.org/10.1016/j.corsci.2005.04.012 | es_ES |
dc.description.references | Beleevskii, V.S., Konev, K.A., Novosadov, V.V., Vasil’ev, V.Y.: Estimating corrosion current and tafel constants from the curvature of voltammetric curves near the free-corrosion potential. Prot. Met. 40, 566–569 (2004). https://doi.org/10.1023/B:PROM.0000049521.65336.25 | es_ES |
dc.description.references | Lakshminarayanan, V., Rajagopalan, S.R.: Applications of exponential relaxation methods for corrosion studies and corrosion rate measurement. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences, pp. 465–477. Springer (1986) | es_ES |
dc.description.references | Gao, J., Wu, J., Li, J., Zhao, X.: Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. Ndt E Int. 44, 202–205 (2011). https://doi.org/10.1016/j.ndteint.2010.11.011 | es_ES |
dc.description.references | Fan, L., Bao, Y., Meng, W., Chen, G.: In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B: Eng. 165, 679–689 (2019). https://doi.org/10.1016/j.compositesb.2019.02.051 | es_ES |
dc.description.references | Andringa, M.M., Neikirk, D.P., Dickerson, N.P., Wood, S.L.: Unpowered wireless corrosion sensor for steel reinforced concrete. In: SENSORS, 2005 IEEE, p. 4. IEEE (2005). https://doi.org/10.1109/ICSENS.2005.1597659 | es_ES |
dc.description.references | Degala, S., Rizzo, P., Ramanathan, K., Harries, K.A.: Acoustic emission monitoring of CFRP reinforced concrete slabs. Constr. Build Mater. 23, 2016–2026 (2009). https://doi.org/10.1016/j.conbuildmat.2008.08.026 | es_ES |
dc.description.references | Mustapha, S., Lu, Y., Li, J., Ye, L.: Damage detection in rebar-reinforced concrete beams based on time reversal of guided waves. Struct. Health Monit. 13, 347–358 (2014). https://doi.org/10.1177/1475921714521268 | es_ES |
dc.description.references | Ramón, J.E., Gandía-Romero, J.M., Bataller, R., Alcañiz, M., Valcuende, M., Soto, J.: Potential step voltammetry: an approach to corrosion rate measurement of reinforcements in concrete. Cem. Concr. Compos. 110, 103590 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103590 | es_ES |
dc.description.references | Ramón, J.E.: Sistema de Sensores Embebidos para Monitorizar la Corrosión en Estructuras de Hormigón Armado. Fundamentos, Metodología y Aplicaciones, Ph.D. Thesis, Universitat Politècnica de València, València (Spain) (2018). https://doi.org/10.4995/Thesis/10251/111823 | es_ES |
dc.description.references | Ramón, J.E., Martínez-Ibernón, A., Gandía-Romero, J.M., Fraile, R., Bataller, R., Alcañiz, M., García-Breijo, E., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits. Electrochim. Acta 323, 134702 (2019). https://doi.org/10.1016/j.electacta.2019.134702 | es_ES |
dc.description.references | Martínez-Ibernón, A., Ramón, J.E., Gandía-Romero, J.M., Gasch, I., Valcuende, M., Alcañiz, M., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochim. Acta 328, 135111 (2019). https://doi.org/10.1016/j.electacta.2019.135111 | es_ES |
dc.description.references | Moreno, M., Morris, W., Alvarez, M.G., Duffó, G.S.: Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content. Corros. Sci. 46, 2681–2699 (2004). https://doi.org/10.1016/j.corsci.2004.03.013 | es_ES |
dc.description.references | Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 2: a polarisation model for corrosion evaluation of steel in concrete. Corros. Sci. 50, 3078–3086 (2008). https://doi.org/10.1016/j.corsci.2008.08.021 | es_ES |
dc.description.references | Alcañiz, M., Bataller, R., Gandía-Romero, J.M., Ramón, J.E., Soto, J., Valcuende, M.: Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado, invention patent No. ES2545669, Publication date 19 January 2016. | es_ES |
dc.description.references | Feliu, S., González, J.A., Miranda, J.M., Feliu, V.: Possibilities and problems of in situ techniques for measuring steel corrosion rates in large reinforced concrete structures. Corros. Sci. 47, 217–238 (2005). https://doi.org/10.1016/j.corsci.2004.04.011 | es_ES |
dc.description.references | Feliu, S., Gonzalez, J.A., Andrade, C., Feliu, V.: The determination of the corrosion rate of steel in concrete by a non-stationary method. Corros. Sci. 26, 961–970 (1986). https://doi.org/10.1016/0010-938X(86)90086-7 | es_ES |
dc.description.references | Sagüés, A.A., Kranc, S.C., Moreno, E.I.: Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete. Electrochim. Acta 41, 1239–1243 (1996). https://doi.org/10.1016/0013-4686(95)00476-9 | es_ES |
dc.description.references | Sagüés, A.A., Kranc, S.C., Moreno, E.I.: An improved method for estimating polarization resistance from small-amplitude potentiodynamic scans in concrete. Corrosion 54, 20–28 (1998). https://doi.org/10.5006/1.3284824 | es_ES |
dc.description.references | Gonzalez, J.A., Miranda, J.M., Birbilis, N., Feliu, S.: Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages. Corrosion 61, 37–50 (2005). https://doi.org/10.5006/1.3278158 | es_ES |
dc.description.references | Bastidas, D.M., González, J.A., Feliu, S., Cobo, A., Miranda, J.M.: A quantitative study of concrete-embedded steel corrosion using potentiostatic pulses. Corrosion 63, 1094–1100 (2007). https://doi.org/10.5006/1.3278327 | es_ES |
dc.description.references | Hornbostel, K., Larsen, C.K., Geiker, M.R.: Relationship between concrete resistivity and corrosion rate–A literature review. Cem. Concr. Compos. 39, 60–72 (2013). https://doi.org/10.1016/j.cemconcomp.2013.03.019 | es_ES |
dc.description.references | Qian, S., Zhang, J., Qu, D.: Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures. Cem. Concr. Compos. 28, 685–695 (2006). https://doi.org/10.1016/j.cemconcomp.2006.05.010 | es_ES |
dc.description.references | Ramón, J.E., Martínez, I., Gandía-Romero, J.M., Soto, J.: An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors 21, 2481 (2021). https://doi.org/10.3390/s21072481 | es_ES |
dc.description.references | ASTM G59–97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International, West Conshohocken, PA (2020). http://www.astm.org/cgi-bin/resolver.cgi?G59. Accessed 8 Feb 2022. | es_ES |
dc.description.references | Poursaee, A.: Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim Acta 55, 1200–1206 (2010). https://doi.org/10.1016/j.electacta.2009.10.004 | es_ES |
dc.description.references | ASTM G5–14e1: Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. ASTM International, West Conshohocken, PA (2014). http://www.astm.org/cgi-bin/resolver.cgi?G5. Accessed 8 Feb 2022. | es_ES |
dc.description.references | Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M.P., Park, Y.S.: Surface-oxide growth at platinum electrodes in aqueous H2SO4: reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim. Acta 49, 1451–1459 (2004). https://doi.org/10.1016/j.electacta.2003.11.008 | es_ES |
dc.description.references | Cherevko, S., Topalov, A.A., Zeradjanin, A.R., Katsounaros, I., Mayrhofer, K.J.J.: Gold dissolution: towards understanding of noble metal corrosion. Rsc Adv. 3, 16516–16527 (2013). https://doi.org/10.1039/C3RA42684J | es_ES |
dc.description.references | Joiret, S., Keddam, M., Novoa, X.R., Perez, M.C., Rangel, C., Takenouti, H.: Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem. Concr. Compos. 24, 7–15 (2002). https://doi.org/10.1016/S0958-9465(01)00022-1 | es_ES |
dc.description.references | Sánchez, M., Gregori, J., Alonso, C., García-Jareño, J.J., Takenouti, H., Vicente, F.: Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim. Acta 52, 7634–7641 (2007). https://doi.org/10.1016/j.electacta.2007.02.012 | es_ES |
dc.description.references | Liu, X., MacDonald, D.D., Wang, M., Xu, Y.: Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution. Electrochim. Acta 366, 137437 (2021). https://doi.org/10.1016/j.electacta.2020.137437 | es_ES |
dc.description.references | Byfors, K.: Influence of silica fume and flyash on chloride diffusion and pH values in cement paste. Cem. Concr. Res. 17, 115–130 (1987). https://doi.org/10.1016/0008-8846(87)90066-4 | es_ES |
dc.description.references | Osmanovic, Z., Haračić, N., Zelić, J.: Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts. Cem. Concr. Compos. 91, 189–197 (2018). https://doi.org/10.1016/j.cemconcomp.2018.05.006 | es_ES |
dc.description.references | Andrade, C., Keddam, M., Nóvoa, X.R., Pérez, M.C., Rangel, C.M., Takenouti, H.: Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry. Electrochim. Acta 46, 3905–3912 (2001). https://doi.org/10.1016/S0013-4686(01)00678-8 | es_ES |
dc.description.references | Wang, Y., Liu, C., Wang, Y., Li, Q., Yan, B.: Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment. Electrochim. Acta 331, 135376 (2020). https://doi.org/10.1016/j.electacta.2019.135376 | es_ES |
dc.description.references | Vetter, K.J., Schultze, J.W.: The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4: Part II. Galvanostatic pulse measurements and the model of oxide growth. J. Electroanal. Chem. Interfacial Electrochem. 34, 141–158 (1972). https://doi.org/10.1016/S0022-0728(72)80510-2 | es_ES |
dc.description.references | ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA (2015). | es_ES |
dc.description.references | Angst, U., Elsener, B., Larsen, C.K., Vennesland, Ø.: Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion. Electrochim. Acta 56, 5877–5889 (2011). https://doi.org/10.1016/j.electacta.2011.04.124 | es_ES |
dc.description.references | Koga, G.Y., Albert, B., Roche, V., Nogueira, R.P.: A comparative study of mild steel passivation embedded in Belite-Ye’elimite-Ferrite and Porland cement mortars. Electrochim. Acta 261, 66–77 (2018). https://doi.org/10.1016/j.electacta.2017.12.128 | es_ES |
dc.description.references | Ha, T.H., Muralidharan, S., Bae, J.H., Ha, Y.C., Lee, H.G., Park, K.W., Kim, D.K.: Effect of unburnt carbon on the corrosion performance of fly ash cement mortar. Constr. Build. Mater. 19, 509–515 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.005 | es_ES |
dc.description.references | Nguyen, Q.D., Castel, A.: Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cem. Concr. Res. 132, 106051 (2020). https://doi.org/10.1016/j.cemconres.2020.106051 | es_ES |
dc.description.references | Poursaee, A.: Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern-Geary constant of reinforcing steel in concrete. Cem. Concr. Res. 40, 1451–1458 (2010). https://doi.org/10.1016/j.cemconres.2010.04.006 | es_ES |
dc.description.references | Vedalakshmi, R., Thangavel, K.: Reliability of electrochemical techniques to predict the corrosion rate of steel in concrete structures. Arab. J. Sci. Eng. 36, 769–783 (2011). https://doi.org/10.1007/s13369-011-0082-4 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |