- -

Adaptive spatial discretization using reinforcement learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive spatial discretization using reinforcement learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Butt, Jemil es_ES
dc.contributor.author Wieser, Andreas es_ES
dc.date.accessioned 2023-02-22T08:47:34Z
dc.date.available 2023-02-22T08:47:34Z
dc.date.issued 2023-01-27
dc.identifier.isbn 9788490489796
dc.identifier.uri http://hdl.handle.net/10251/192008
dc.description.abstract [EN] A well-known challenge for deformation monitoring is the spatial discretization, i.e. the choice of monitoring points at which measurements are to be taken. Well-chosen monitoring points employ prior knowledge to yield a significant amount of information about a certain aspect of the monitored object. However, the choice of such a set of points is typically made to be practically expedient or left to the measurement instrument itself. We aim to derive adaptive discretization strategies that implicitly incorporate domain knowledge about the monitored object via a cycle of interaction and learning.  In those strategies, previous measurements impact the locations of subsequent ones. We formulate the choice of monitoring points as a decision theoretical problem and review the framework of reinforcement learning which formalizes the problem of deriving optimal sequential decisions under uncertainty. Iterative algorithms produce solution schemes for this optimal control task. We benchmark the performance of reinforcement learning and compare its results to random, pseudorandom, and numerically designed discretization strategies on several geodetically motivated examples. Advantages, disadvantages, and practical feasibility of the approach are evaluated and reveal a significant boost in efficiency of the data collection scheme compared to classical approaches. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th Joint International Symposium on Deformation Monitoring (JISDM 2022)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Spatial discretization es_ES
dc.subject Monitoring es_ES
dc.subject Reinforcement learning es_ES
dc.subject Optimization es_ES
dc.subject Neural networks es_ES
dc.title Adaptive spatial discretization using reinforcement learning es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Butt, J.; Wieser, A. (2023). Adaptive spatial discretization using reinforcement learning. En 5th Joint International Symposium on Deformation Monitoring (JISDM 2022). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/192008 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 5th Joint International Symposium on Deformation Monitoring es_ES
dc.relation.conferencedate Junio 20-22, 2022 es_ES
dc.relation.conferenceplace València, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/JISDM/JISDM2022/paper/view/13617 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\13617 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem