- -

Machine learning models to predict nitrate concentration in a river basin

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine learning models to predict nitrate concentration in a river basin

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dorado-Guerra, Diana Yaritza es_ES
dc.contributor.author Corzo-Pérez, Gerald es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Pérez-Martín, Miguel Ángel es_ES
dc.date.accessioned 2023-02-22T19:00:37Z
dc.date.available 2023-02-22T19:00:37Z
dc.date.issued 2022-12-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192031
dc.description.abstract [EN] Aquifer-stream interactions affect the water quality in Mediterranean areas; therefore, the coupling of surface water and groundwater models is generally used to solve water-planning and pollution problems in river basins. However, their use is limited because model inputs and outputs are not spatially and temporally linked, and the data update and fitting are laborious tasks. Machine learning models have shown great potential in water quality simulation, as they can identify the statistical relationship between input and output data without the explicit requirement of knowing the physical processes. This allows the ecological, hydrological, and environmental variables that influence water quality to be analysed with a holistic approach. In this research, feature selection (FS) methods and algorithms of artificial intelligence¿random forest (RF) and eXtreme Gradient Boosting (XGBoost) trees¿are used to simulate nitrate concentration and determine the main drivers related to nitrate pollution in Mediterranean streams. The developed models included 19 inputs and sampling of nitrate concentration in 159 surface water quality-gauging stations as explanatory variables. The models were trained on 70 percent data, with 30 percent used to validate the predictions. Results showed that the combination of FS method with local knowledge about the dataset is the best option to improve the model¿s performance, while RF and XGBoost simulate the nitrate concentration with high performance (r=0.93 and r=0.92, respectively). The final ranking, based on the relative importance of the variables in the RF and XGBoost models, showed that, regarding nitrogen and phosphorus concentration, the location explained 87 percent of the nitrate variability. RF and XGBoost predicted nitrate concentration in surface water with high accuracy without using conditions or parameters of entry and enabled the observation of different relationships between drivers. Thus, it is possible to identify and delimit zones with a spatial risk of pollution and approaches to implementing solutions es_ES
dc.description.sponsorship We appreciate the help provided by the Júcar River Basin District Authority (CHJ), who gathered field data. The first author's research is partially funded by a PhD scholarship from the food research stream of the program `Colombia Científica Pasaporte a la Ciencia, granted by the Colombian Institute for Educational Technical Studies Abroad (Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior, ICETEX). The authors thank the Spanish Research Agency (AEI) for the financial support to RESPHIRA project (PID2019- 106322RB-100)/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Physics Publishing Ltd. es_ES
dc.relation.ispartof Environmental Research Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nitrate es_ES
dc.subject Random forest es_ES
dc.subject EXtreme gradient boosting es_ES
dc.subject Feature selection es_ES
dc.subject Surface water bodies es_ES
dc.subject Boruta shap es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Machine learning models to predict nitrate concentration in a river basin es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2515-7620/acabb7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106322RB-I00/ES/REDUCCION DE LA ESCALA TEMPORAL EN LA PLANIFICACION HIDROLOGICA PARA LA GESTION DE RECURSOS Y EL MEDIO AMBIENTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Dorado-Guerra, DY.; Corzo-Pérez, G.; Paredes Arquiola, J.; Pérez-Martín, MÁ. (2022). Machine learning models to predict nitrate concentration in a river basin. Environmental Research Communications. 4(12):1-18. https://doi.org/10.1088/2515-7620/acabb7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/2515-7620/acabb7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2515-7620 es_ES
dc.relation.pasarela S\482947 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior es_ES
upv.costeAPC 1315 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem