Hernández-Verón, MA.; Martínez Molada, E. (2022). Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials. Journal of Computational and Applied Mathematics. 404:1-12. https://doi.org/10.1016/j.cam.2021.113391
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192057
Title:
|
Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials
|
Author:
|
Hernández-Verón, M. A.
Martínez Molada, Eulalia
|
UPV Unit:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
|
Issued date:
|
|
Abstract:
|
[EN] In this work, we use Newton-type iterative schemes to obtain a domain of existence of solution, approximate the solution of Chandrasekhar H-equations and deal with the case of nonlinear integral equations with ...[+]
[EN] In this work, we use Newton-type iterative schemes to obtain a domain of existence of solution, approximate the solution of Chandrasekhar H-equations and deal with the case of nonlinear integral equations with non-separable kernels. A change of variable in the Chandrasekhar H-equation allows us to apply a previous study by describing nonlinear integral equations of Hammerstein-type with non-separable kernel. We use the Bernstein polynomials for approximating the non-separable kernel and then we apply a semilocal converge study done previously to the Chandrasekhar H-equation. Moreover, we apply Newton-type iterative schemes for some specific Chandrasekhar H-equations to approximate the H-function solution and compare our results with others obtained previously. (C)& nbsp;2021 Elsevier B.V. All rights reserved.
[-]
|
Subjects:
|
Chandrasekhar H-equation
,
Non-separable kernel
,
Newton-type iterative scheme
,
Domain of existence of solution
,
Domain of uniqueness of solution
|
Copyrigths:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Source:
|
Journal of Computational and Applied Mathematics. (issn:
0377-0427
)
|
DOI:
|
10.1016/j.cam.2021.113391
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.cam.2021.113391
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
|
Thanks:
|
This research was partially supported by Ministerio de Economia y Competitividad, Spain under grant PGC2018-095896-B-C21-C22
|
Type:
|
Artículo
|