Hernández-Verón, MA.; Martínez Molada, E. (2022). Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials. Journal of Computational and Applied Mathematics. 404:1-12. https://doi.org/10.1016/j.cam.2021.113391
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192057
[EN] In this work, we use Newton-type iterative schemes to obtain a domain of existence of solution, approximate the solution of Chandrasekhar H-equations and deal with the case of nonlinear integral equations with ...[+]
[EN] In this work, we use Newton-type iterative schemes to obtain a domain of existence of solution, approximate the solution of Chandrasekhar H-equations and deal with the case of nonlinear integral equations with non-separable kernels. A change of variable in the Chandrasekhar H-equation allows us to apply a previous study by describing nonlinear integral equations of Hammerstein-type with non-separable kernel. We use the Bernstein polynomials for approximating the non-separable kernel and then we apply a semilocal converge study done previously to the Chandrasekhar H-equation. Moreover, we apply Newton-type iterative schemes for some specific Chandrasekhar H-equations to approximate the H-function solution and compare our results with others obtained previously. (C)& nbsp;2021 Elsevier B.V. All rights reserved.[-]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad, Spain under grant PGC2018-095896-B-C21-C22