Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández-Verón, M. A. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.date.accessioned | 2023-02-23T19:00:58Z | |
dc.date.available | 2023-02-23T19:00:58Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192057 | |
dc.description.abstract | [EN] In this work, we use Newton-type iterative schemes to obtain a domain of existence of solution, approximate the solution of Chandrasekhar H-equations and deal with the case of nonlinear integral equations with non-separable kernels. A change of variable in the Chandrasekhar H-equation allows us to apply a previous study by describing nonlinear integral equations of Hammerstein-type with non-separable kernel. We use the Bernstein polynomials for approximating the non-separable kernel and then we apply a semilocal converge study done previously to the Chandrasekhar H-equation. Moreover, we apply Newton-type iterative schemes for some specific Chandrasekhar H-equations to approximate the H-function solution and compare our results with others obtained previously. (C)& nbsp;2021 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad, Spain under grant PGC2018-095896-B-C21-C22 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Chandrasekhar H-equation | es_ES |
dc.subject | Non-separable kernel | es_ES |
dc.subject | Newton-type iterative scheme | es_ES |
dc.subject | Domain of existence of solution | es_ES |
dc.subject | Domain of uniqueness of solution | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2021.113391 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Hernández-Verón, MA.; Martínez Molada, E. (2022). Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials. Journal of Computational and Applied Mathematics. 404:1-12. https://doi.org/10.1016/j.cam.2021.113391 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2021.113391 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 404 | es_ES |
dc.relation.pasarela | S\453471 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |