- -

Dynamical analysis of an iterative method with memory on a family of third-degree polynomials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dynamical analysis of an iterative method with memory on a family of third-degree polynomials

Show full item record

Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2022). Dynamical analysis of an iterative method with memory on a family of third-degree polynomials. AIMS Mathematics. 7(4):6445-6466. https://doi.org/10.3934/math.2022359

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192068

Files in this item

Item Metadata

Title: Dynamical analysis of an iterative method with memory on a family of third-degree polynomials
Author: Campos, Beatriz Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Vindel, Pura
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
[EN] Qualitative analysis of iterative methods with memory has been carried out a few years ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic polynomials. In this paper, we ...[+]
Subjects: Nonlinear equation , Kurchatov's scheme , Stability , Dynamical plane , Bifurcation , Chaos , Parameter line
Copyrigths: Reconocimiento (by)
Source:
AIMS Mathematics. (eissn: 2473-6988 )
DOI: 10.3934/math.2022359
Publisher:
American Institute of Mathematical Sciences
Publisher version: https://doi.org/10.3934/math.2022359
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/UJI//UJI-B2019-18/
Thanks:
This paper is supported by the MCIU grant PGC2018-095896-B-C22. The first and the last authors are also supported by University Jaume I grant UJI-B2019-18. Moreover, the authors would like to thank the anonymous reviewers ...[+]
Type: Artículo

References

V. A. Kurchatov, On a method of linear interpolation for the solution of funcional equations (Russian), <i>Dolk. Akad. Nauk SSSR</i>, <b>198</b> (1971), 524–526. Translation in <i>Soviet Math. Dolk</i>. <b>12</b>, 835–838.

M. Petković, B. Neta, L. Petković, J. Džunić, <i>Multipoint Methods for Solving Nonlinear Equations</i>, Boston: Academic Press, 2013.

A. Cordero, T. Lotfi, P. Bakhtiari, J. R. Torregrosa, An efficient two-parametric family with memory for nonlinear equations, <i>Numer. Algorithms</i>, <b>68</b> (2015), 323–335. https://doi.org/10.1016/j.worlddev.2014.11.009 [+]
V. A. Kurchatov, On a method of linear interpolation for the solution of funcional equations (Russian), <i>Dolk. Akad. Nauk SSSR</i>, <b>198</b> (1971), 524–526. Translation in <i>Soviet Math. Dolk</i>. <b>12</b>, 835–838.

M. Petković, B. Neta, L. Petković, J. Džunić, <i>Multipoint Methods for Solving Nonlinear Equations</i>, Boston: Academic Press, 2013.

A. Cordero, T. Lotfi, P. Bakhtiari, J. R. Torregrosa, An efficient two-parametric family with memory for nonlinear equations, <i>Numer. Algorithms</i>, <b>68</b> (2015), 323–335. https://doi.org/10.1016/j.worlddev.2014.11.009

A. Cordero, T. Lotfi, J. R. Torregrosa, P. Assari, S. Taher-Khani, Some new bi-accelerator two-point method for solving nonlinear equations, <i>J. Comput. Appl. Math.</i>, <b>35</b> (2016), 251–267. https://doi.org/10.1002/sim.6628

X. Wang, T. Zhang, Y. Qin, Efficient two-step derivative-free iterative methods with memory and their dynamics, <i>Int. J. Comput. Math.</i>, <b>93</b> (2016), 1423–1446. https://doi.org/10.1080/00207160.2015.1056168

P. Bakhtiari, A. Cordero, T. Lotfi, K. Mahdiani, J. R. Torregrosa, Widening basins of attraction of optimal iterative methods for solving nonlinear equations, <i>Nonlinear Dynam.</i>, <b>87</b> (2017), 913–938. https://doi.org/10.1007/s11071-016-3089-2

C. L. Howk, J. L. Hueso, E. Martínez, C. Teruel, A class of efficient high-order iterative methods with memory for nonlinear equations and their dynamics, <i>Math. Meth. Appl. Sci.</i>, <b>41</b> (2018), 7263–7282. https://doi.org/10.1002/mma.4821

B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory, <i>Appl. Math. Comput.</i>, <b>271</b> (2015), 701–715. https://doi.org/10.1016/j.amc.2015.09.056

B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel, Stability of King's family of iterative methods with memory, <i>Comput. Appl. Math.</i>, <b>318</b> (2017), 504–514. https://doi.org/10.1016/j.cam.2016.01.035

N. Choubey, A. Cordero, J. P. Jaiswal, J. R. Torregrosa, Dynamical techniques for analyzing iterative schemes with memory, <i>Complexity</i>, <b>2018</b> (2018), Article ID 1232341, 13 pages.

F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Stability and applicability of iterative methods with memory, <i>J. Math. Chem.</i>, <b>57</b> (2019), 1282–1300. https://doi.org/10.1007/s10910-018-0952-z

F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, On the choice of the best members of the Kim family and the improvement of its convergence, <i>Math. Meth. Appl. Sci.</i>, <b>43</b> (2020), 8051–8066. https://doi.org/10.1002/mma.6014

F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Impact on stability by the use of memory in Traub-type schemes, <i>Mathematics</i>, <b>8</b> (2020), 274.

A. Cordero, F. Soleymani, J. R. Torregrosa, F. K. Haghani, A family of Kurchatov-type methods and its stability, <i>Appl. Math. Comput.</i>, <b>294</b> (2017), 264–279. https://doi.org/10.1016/j.amc.2016.09.021

R. C. Robinson, <i>An Introduction to Dynamical Systems, Continous and Discrete</i>, Providence: Americal Mathematical Society, 2012.

G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator I. Some generic properties, <i>Int. J. Bifurcations Chaos</i>, <b>9</b> (1999), 119–153. https://doi.org/10.2307/605565

G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator II. Non invertible maps with simple focal points, <i>Int. J. Bifurcations Chaos</i>, <b>13</b> (2003), 2253–2277. https://doi.org/10.1142/S021812740300793X

G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator III. Non simple focal points and related bifurcations, <i>Int. J. Bifurcations Chaos</i>, <b>15</b> (2005), 451–496. https://doi.org/10.1142/S0218127405012314

G. Bischi, L. Gardini, C. Mira, New phenomena related to the presence of focal points in two dimensional maps, <i>J. Ann. Math. Salesiane</i>, (special issue Proceedings ECIT98), <b>13</b> (1999), 81–90.

A. Garijo, X. Jarque, Global dynamics of the real secant method, <i>Nonlinearity</i>, <b>32</b> (2019), 4557–4578. https://doi.org/10.1088/1361-6544/ab2f55

A. Garijo, X. Jarque, The secant map applied to a real polynomial with multiple roots, <i>Discrete Cont. Dyn-A.</i>, <b>40</b> (2020), 6783–6794. https://doi.org/10.3934/dcds.2020133

L. Gardini, G. Bischi, D. Fournier-Prunaret, Basin boundaries and focal points in a map coming from Bairstow's method, <i>Chaos</i>, <b>9</b> (1999), 367–380.

M. R. Ferchichi, I. Djellit, On some properties of focal points, <i>Discrete Dyn. Nat. Soc.</i>, <b>2009</b> (2009), Article ID 646258, 11 pages.

G. Bischi, L. Gardini, C. Mira, Contact bifurcations related to critical sets and focal points in iterated maps of the plane, <i>Proceedings of the International Workshop Future Directions in Difference Equations</i>, (2011), 15–50.

N. Pecora, F. Tramontana, Maps with vanishing denominator and their applications, <i>Front. Appl. Math. Stat.</i>, <b>2</b> (2016), 12 pages.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record