Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2022). Dynamical analysis of an iterative method with memory on a family of third-degree polynomials. AIMS Mathematics. 7(4):6445-6466. https://doi.org/10.3934/math.2022359
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192068
Title:
|
Dynamical analysis of an iterative method with memory on a family of third-degree polynomials
|
Author:
|
Campos, Beatriz
Cordero Barbero, Alicia
Torregrosa Sánchez, Juan Ramón
Vindel, Pura
|
UPV Unit:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
|
Issued date:
|
|
Abstract:
|
[EN] Qualitative analysis of iterative methods with memory has been carried out a few years ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic polynomials. In this paper, we ...[+]
[EN] Qualitative analysis of iterative methods with memory has been carried out a few years ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic polynomials. In this paper, we accomplish a complete dynamical study of an iterative method with memory, the Kurchatov scheme, applied on a family of cubic polynomials. To reach this goal we transform the iterative scheme with memory into a discrete dynamical system defined on R-2. We obtain a complete description of the dynamical planes for every value of parameter of the family considered. We also analyze the bifurcations that occur related with the number of fixed points. Finally, the dynamical results are summarized in a parameter line. As a conclusion, we obtain that this scheme is completely stable for cubic polynomials since the only attractors that appear for any value of the parameter, are the roots of the polynomial.
[-]
|
Subjects:
|
Nonlinear equation
,
Kurchatov's scheme
,
Stability
,
Dynamical plane
,
Bifurcation
,
Chaos
,
Parameter line
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
AIMS Mathematics. (eissn:
2473-6988
)
|
DOI:
|
10.3934/math.2022359
|
Publisher:
|
American Institute of Mathematical Sciences
|
Publisher version:
|
https://doi.org/10.3934/math.2022359
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/UJI//UJI-B2019-18/
|
Thanks:
|
This paper is supported by the MCIU grant PGC2018-095896-B-C22. The first and the last authors are also supported by University Jaume I grant UJI-B2019-18. Moreover, the authors would like to thank the anonymous reviewers ...[+]
This paper is supported by the MCIU grant PGC2018-095896-B-C22. The first and the last authors are also supported by University Jaume I grant UJI-B2019-18. Moreover, the authors would like to thank the anonymous reviewers for their comments and suggestions.
[-]
|
Type:
|
Artículo
|