- -

Dynamical analysis of an iterative method with memory on a family of third-degree polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamical analysis of an iterative method with memory on a family of third-degree polynomials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Beatriz es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vindel, Pura es_ES
dc.date.accessioned 2023-02-24T19:01:17Z
dc.date.available 2023-02-24T19:01:17Z
dc.date.issued 2022 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192068
dc.description.abstract [EN] Qualitative analysis of iterative methods with memory has been carried out a few years ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic polynomials. In this paper, we accomplish a complete dynamical study of an iterative method with memory, the Kurchatov scheme, applied on a family of cubic polynomials. To reach this goal we transform the iterative scheme with memory into a discrete dynamical system defined on R-2. We obtain a complete description of the dynamical planes for every value of parameter of the family considered. We also analyze the bifurcations that occur related with the number of fixed points. Finally, the dynamical results are summarized in a parameter line. As a conclusion, we obtain that this scheme is completely stable for cubic polynomials since the only attractors that appear for any value of the parameter, are the roots of the polynomial. es_ES
dc.description.sponsorship This paper is supported by the MCIU grant PGC2018-095896-B-C22. The first and the last authors are also supported by University Jaume I grant UJI-B2019-18. Moreover, the authors would like to thank the anonymous reviewers for their comments and suggestions. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof AIMS Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear equation es_ES
dc.subject Kurchatov's scheme es_ES
dc.subject Stability es_ES
dc.subject Dynamical plane es_ES
dc.subject Bifurcation es_ES
dc.subject Chaos es_ES
dc.subject Parameter line es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Dynamical analysis of an iterative method with memory on a family of third-degree polynomials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/math.2022359 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2019-18/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2022). Dynamical analysis of an iterative method with memory on a family of third-degree polynomials. AIMS Mathematics. 7(4):6445-6466. https://doi.org/10.3934/math.2022359 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/math.2022359 es_ES
dc.description.upvformatpinicio 6445 es_ES
dc.description.upvformatpfin 6466 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2473-6988 es_ES
dc.relation.pasarela S\455037 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references V. A. Kurchatov, On a method of linear interpolation for the solution of funcional equations (Russian), <i>Dolk. Akad. Nauk SSSR</i>, <b>198</b> (1971), 524–526. Translation in <i>Soviet Math. Dolk</i>. <b>12</b>, 835–838. es_ES
dc.description.references M. Petković, B. Neta, L. Petković, J. Džunić, <i>Multipoint Methods for Solving Nonlinear Equations</i>, Boston: Academic Press, 2013. es_ES
dc.description.references A. Cordero, T. Lotfi, P. Bakhtiari, J. R. Torregrosa, An efficient two-parametric family with memory for nonlinear equations, <i>Numer. Algorithms</i>, <b>68</b> (2015), 323–335. https://doi.org/10.1016/j.worlddev.2014.11.009 es_ES
dc.description.references A. Cordero, T. Lotfi, J. R. Torregrosa, P. Assari, S. Taher-Khani, Some new bi-accelerator two-point method for solving nonlinear equations, <i>J. Comput. Appl. Math.</i>, <b>35</b> (2016), 251–267. https://doi.org/10.1002/sim.6628 es_ES
dc.description.references X. Wang, T. Zhang, Y. Qin, Efficient two-step derivative-free iterative methods with memory and their dynamics, <i>Int. J. Comput. Math.</i>, <b>93</b> (2016), 1423–1446. https://doi.org/10.1080/00207160.2015.1056168 es_ES
dc.description.references P. Bakhtiari, A. Cordero, T. Lotfi, K. Mahdiani, J. R. Torregrosa, Widening basins of attraction of optimal iterative methods for solving nonlinear equations, <i>Nonlinear Dynam.</i>, <b>87</b> (2017), 913–938. https://doi.org/10.1007/s11071-016-3089-2 es_ES
dc.description.references C. L. Howk, J. L. Hueso, E. Martínez, C. Teruel, A class of efficient high-order iterative methods with memory for nonlinear equations and their dynamics, <i>Math. Meth. Appl. Sci.</i>, <b>41</b> (2018), 7263–7282. https://doi.org/10.1002/mma.4821 es_ES
dc.description.references B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory, <i>Appl. Math. Comput.</i>, <b>271</b> (2015), 701–715. https://doi.org/10.1016/j.amc.2015.09.056 es_ES
dc.description.references B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel, Stability of King's family of iterative methods with memory, <i>Comput. Appl. Math.</i>, <b>318</b> (2017), 504–514. https://doi.org/10.1016/j.cam.2016.01.035 es_ES
dc.description.references N. Choubey, A. Cordero, J. P. Jaiswal, J. R. Torregrosa, Dynamical techniques for analyzing iterative schemes with memory, <i>Complexity</i>, <b>2018</b> (2018), Article ID 1232341, 13 pages. es_ES
dc.description.references F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Stability and applicability of iterative methods with memory, <i>J. Math. Chem.</i>, <b>57</b> (2019), 1282–1300. https://doi.org/10.1007/s10910-018-0952-z es_ES
dc.description.references F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, On the choice of the best members of the Kim family and the improvement of its convergence, <i>Math. Meth. Appl. Sci.</i>, <b>43</b> (2020), 8051–8066. https://doi.org/10.1002/mma.6014 es_ES
dc.description.references F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Impact on stability by the use of memory in Traub-type schemes, <i>Mathematics</i>, <b>8</b> (2020), 274. es_ES
dc.description.references A. Cordero, F. Soleymani, J. R. Torregrosa, F. K. Haghani, A family of Kurchatov-type methods and its stability, <i>Appl. Math. Comput.</i>, <b>294</b> (2017), 264–279. https://doi.org/10.1016/j.amc.2016.09.021 es_ES
dc.description.references R. C. Robinson, <i>An Introduction to Dynamical Systems, Continous and Discrete</i>, Providence: Americal Mathematical Society, 2012. es_ES
dc.description.references G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator I. Some generic properties, <i>Int. J. Bifurcations Chaos</i>, <b>9</b> (1999), 119–153. https://doi.org/10.2307/605565 es_ES
dc.description.references G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator II. Non invertible maps with simple focal points, <i>Int. J. Bifurcations Chaos</i>, <b>13</b> (2003), 2253–2277. https://doi.org/10.1142/S021812740300793X es_ES
dc.description.references G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator III. Non simple focal points and related bifurcations, <i>Int. J. Bifurcations Chaos</i>, <b>15</b> (2005), 451–496. https://doi.org/10.1142/S0218127405012314 es_ES
dc.description.references G. Bischi, L. Gardini, C. Mira, New phenomena related to the presence of focal points in two dimensional maps, <i>J. Ann. Math. Salesiane</i>, (special issue Proceedings ECIT98), <b>13</b> (1999), 81–90. es_ES
dc.description.references A. Garijo, X. Jarque, Global dynamics of the real secant method, <i>Nonlinearity</i>, <b>32</b> (2019), 4557–4578. https://doi.org/10.1088/1361-6544/ab2f55 es_ES
dc.description.references A. Garijo, X. Jarque, The secant map applied to a real polynomial with multiple roots, <i>Discrete Cont. Dyn-A.</i>, <b>40</b> (2020), 6783–6794. https://doi.org/10.3934/dcds.2020133 es_ES
dc.description.references L. Gardini, G. Bischi, D. Fournier-Prunaret, Basin boundaries and focal points in a map coming from Bairstow's method, <i>Chaos</i>, <b>9</b> (1999), 367–380. es_ES
dc.description.references M. R. Ferchichi, I. Djellit, On some properties of focal points, <i>Discrete Dyn. Nat. Soc.</i>, <b>2009</b> (2009), Article ID 646258, 11 pages. es_ES
dc.description.references G. Bischi, L. Gardini, C. Mira, Contact bifurcations related to critical sets and focal points in iterated maps of the plane, <i>Proceedings of the International Workshop Future Directions in Difference Equations</i>, (2011), 15–50. es_ES
dc.description.references N. Pecora, F. Tramontana, Maps with vanishing denominator and their applications, <i>Front. Appl. Math. Stat.</i>, <b>2</b> (2016), 12 pages. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem