Mostrar el registro sencillo del ítem
dc.contributor.author | Campos, Beatriz | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vindel, Pura | es_ES |
dc.date.accessioned | 2023-02-24T19:01:17Z | |
dc.date.available | 2023-02-24T19:01:17Z | |
dc.date.issued | 2022 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192068 | |
dc.description.abstract | [EN] Qualitative analysis of iterative methods with memory has been carried out a few years ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic polynomials. In this paper, we accomplish a complete dynamical study of an iterative method with memory, the Kurchatov scheme, applied on a family of cubic polynomials. To reach this goal we transform the iterative scheme with memory into a discrete dynamical system defined on R-2. We obtain a complete description of the dynamical planes for every value of parameter of the family considered. We also analyze the bifurcations that occur related with the number of fixed points. Finally, the dynamical results are summarized in a parameter line. As a conclusion, we obtain that this scheme is completely stable for cubic polynomials since the only attractors that appear for any value of the parameter, are the roots of the polynomial. | es_ES |
dc.description.sponsorship | This paper is supported by the MCIU grant PGC2018-095896-B-C22. The first and the last authors are also supported by University Jaume I grant UJI-B2019-18. Moreover, the authors would like to thank the anonymous reviewers for their comments and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Mathematical Sciences | es_ES |
dc.relation.ispartof | AIMS Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear equation | es_ES |
dc.subject | Kurchatov's scheme | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Dynamical plane | es_ES |
dc.subject | Bifurcation | es_ES |
dc.subject | Chaos | es_ES |
dc.subject | Parameter line | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Dynamical analysis of an iterative method with memory on a family of third-degree polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/math.2022359 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2019-18/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2022). Dynamical analysis of an iterative method with memory on a family of third-degree polynomials. AIMS Mathematics. 7(4):6445-6466. https://doi.org/10.3934/math.2022359 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/math.2022359 | es_ES |
dc.description.upvformatpinicio | 6445 | es_ES |
dc.description.upvformatpfin | 6466 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2473-6988 | es_ES |
dc.relation.pasarela | S\455037 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | V. A. Kurchatov, On a method of linear interpolation for the solution of funcional equations (Russian), <i>Dolk. Akad. Nauk SSSR</i>, <b>198</b> (1971), 524–526. Translation in <i>Soviet Math. Dolk</i>. <b>12</b>, 835–838. | es_ES |
dc.description.references | M. Petković, B. Neta, L. Petković, J. Džunić, <i>Multipoint Methods for Solving Nonlinear Equations</i>, Boston: Academic Press, 2013. | es_ES |
dc.description.references | A. Cordero, T. Lotfi, P. Bakhtiari, J. R. Torregrosa, An efficient two-parametric family with memory for nonlinear equations, <i>Numer. Algorithms</i>, <b>68</b> (2015), 323–335. https://doi.org/10.1016/j.worlddev.2014.11.009 | es_ES |
dc.description.references | A. Cordero, T. Lotfi, J. R. Torregrosa, P. Assari, S. Taher-Khani, Some new bi-accelerator two-point method for solving nonlinear equations, <i>J. Comput. Appl. Math.</i>, <b>35</b> (2016), 251–267. https://doi.org/10.1002/sim.6628 | es_ES |
dc.description.references | X. Wang, T. Zhang, Y. Qin, Efficient two-step derivative-free iterative methods with memory and their dynamics, <i>Int. J. Comput. Math.</i>, <b>93</b> (2016), 1423–1446. https://doi.org/10.1080/00207160.2015.1056168 | es_ES |
dc.description.references | P. Bakhtiari, A. Cordero, T. Lotfi, K. Mahdiani, J. R. Torregrosa, Widening basins of attraction of optimal iterative methods for solving nonlinear equations, <i>Nonlinear Dynam.</i>, <b>87</b> (2017), 913–938. https://doi.org/10.1007/s11071-016-3089-2 | es_ES |
dc.description.references | C. L. Howk, J. L. Hueso, E. Martínez, C. Teruel, A class of efficient high-order iterative methods with memory for nonlinear equations and their dynamics, <i>Math. Meth. Appl. Sci.</i>, <b>41</b> (2018), 7263–7282. https://doi.org/10.1002/mma.4821 | es_ES |
dc.description.references | B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory, <i>Appl. Math. Comput.</i>, <b>271</b> (2015), 701–715. https://doi.org/10.1016/j.amc.2015.09.056 | es_ES |
dc.description.references | B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel, Stability of King's family of iterative methods with memory, <i>Comput. Appl. Math.</i>, <b>318</b> (2017), 504–514. https://doi.org/10.1016/j.cam.2016.01.035 | es_ES |
dc.description.references | N. Choubey, A. Cordero, J. P. Jaiswal, J. R. Torregrosa, Dynamical techniques for analyzing iterative schemes with memory, <i>Complexity</i>, <b>2018</b> (2018), Article ID 1232341, 13 pages. | es_ES |
dc.description.references | F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Stability and applicability of iterative methods with memory, <i>J. Math. Chem.</i>, <b>57</b> (2019), 1282–1300. https://doi.org/10.1007/s10910-018-0952-z | es_ES |
dc.description.references | F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, On the choice of the best members of the Kim family and the improvement of its convergence, <i>Math. Meth. Appl. Sci.</i>, <b>43</b> (2020), 8051–8066. https://doi.org/10.1002/mma.6014 | es_ES |
dc.description.references | F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, Impact on stability by the use of memory in Traub-type schemes, <i>Mathematics</i>, <b>8</b> (2020), 274. | es_ES |
dc.description.references | A. Cordero, F. Soleymani, J. R. Torregrosa, F. K. Haghani, A family of Kurchatov-type methods and its stability, <i>Appl. Math. Comput.</i>, <b>294</b> (2017), 264–279. https://doi.org/10.1016/j.amc.2016.09.021 | es_ES |
dc.description.references | R. C. Robinson, <i>An Introduction to Dynamical Systems, Continous and Discrete</i>, Providence: Americal Mathematical Society, 2012. | es_ES |
dc.description.references | G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator I. Some generic properties, <i>Int. J. Bifurcations Chaos</i>, <b>9</b> (1999), 119–153. https://doi.org/10.2307/605565 | es_ES |
dc.description.references | G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator II. Non invertible maps with simple focal points, <i>Int. J. Bifurcations Chaos</i>, <b>13</b> (2003), 2253–2277. https://doi.org/10.1142/S021812740300793X | es_ES |
dc.description.references | G. Bischi, L. Gardini, C. Mira, Plane maps with denomiator III. Non simple focal points and related bifurcations, <i>Int. J. Bifurcations Chaos</i>, <b>15</b> (2005), 451–496. https://doi.org/10.1142/S0218127405012314 | es_ES |
dc.description.references | G. Bischi, L. Gardini, C. Mira, New phenomena related to the presence of focal points in two dimensional maps, <i>J. Ann. Math. Salesiane</i>, (special issue Proceedings ECIT98), <b>13</b> (1999), 81–90. | es_ES |
dc.description.references | A. Garijo, X. Jarque, Global dynamics of the real secant method, <i>Nonlinearity</i>, <b>32</b> (2019), 4557–4578. https://doi.org/10.1088/1361-6544/ab2f55 | es_ES |
dc.description.references | A. Garijo, X. Jarque, The secant map applied to a real polynomial with multiple roots, <i>Discrete Cont. Dyn-A.</i>, <b>40</b> (2020), 6783–6794. https://doi.org/10.3934/dcds.2020133 | es_ES |
dc.description.references | L. Gardini, G. Bischi, D. Fournier-Prunaret, Basin boundaries and focal points in a map coming from Bairstow's method, <i>Chaos</i>, <b>9</b> (1999), 367–380. | es_ES |
dc.description.references | M. R. Ferchichi, I. Djellit, On some properties of focal points, <i>Discrete Dyn. Nat. Soc.</i>, <b>2009</b> (2009), Article ID 646258, 11 pages. | es_ES |
dc.description.references | G. Bischi, L. Gardini, C. Mira, Contact bifurcations related to critical sets and focal points in iterated maps of the plane, <i>Proceedings of the International Workshop Future Directions in Difference Equations</i>, (2011), 15–50. | es_ES |
dc.description.references | N. Pecora, F. Tramontana, Maps with vanishing denominator and their applications, <i>Front. Appl. Math. Stat.</i>, <b>2</b> (2016), 12 pages. | es_ES |