- -

Detecting environmentally-related problems on Twitter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detecting environmentally-related problems on Twitter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Periñán-Pascual, Carlos es_ES
dc.contributor.author Arcas-Túnez, Francisco es_ES
dc.date.accessioned 2023-02-28T19:00:53Z
dc.date.available 2023-02-28T19:00:53Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 1537-5110 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192165
dc.description.abstract [EN] Social media networks such as Facebook and Twitter can be used as a valuable tool to report on environmentally-related problems, e.g. landslides or wildfires, that are about to occur or have just occurred, so that response actions can be promptly executed. The goal of this article is to describe a knowledge-based system that is able to analyse tweets in Spanish to detect a variety of such problems. This research resulted in the implementation of CASPER, a proof-of-concept workbench where multi-domain problem detection has been devised as a two-fold task: topic categorisation and sentiment analysis. (C) 2018 IAgrE. Published by Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship Financial support for this research has been provided by the Spanish Ministry of Economy, Industry and Competitiveness [grant number TIN2016-78799-P] (AEI/FEDER, EU) and by the Spanish Ministry of Education and Science [grant number FFI2014-53788-C3-1-P] es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biosystems Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Twitter es_ES
dc.subject Social sensor es_ES
dc.subject Problem detection es_ES
dc.subject Topic categorisation es_ES
dc.subject Sentiment analysis es_ES
dc.subject.classification FILOLOGIA INGLESA es_ES
dc.title Detecting environmentally-related problems on Twitter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biosystemseng.2018.10.001 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministerio de Economía y Competitividad//FFI2014-53788-C3-1-P//Desarrollo de un laboratorio virtual para el procesamiento computacional del lenguaje natural desde un paradigma funcional/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-78799-13/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Periñán-Pascual, C.; Arcas-Túnez, F. (2019). Detecting environmentally-related problems on Twitter. Biosystems Engineering. 177:31-48. https://doi.org/10.1016/j.biosystemseng.2018.10.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biosystemseng.2018.10.001 es_ES
dc.description.upvformatpinicio 31 es_ES
dc.description.upvformatpfin 48 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 177 es_ES
dc.relation.pasarela S\404513 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem