Mostrar el registro sencillo del ítem
dc.contributor.author | Periñán-Pascual, Carlos | es_ES |
dc.contributor.author | Arcas-Túnez, Francisco | es_ES |
dc.date.accessioned | 2023-02-28T19:00:53Z | |
dc.date.available | 2023-02-28T19:00:53Z | |
dc.date.issued | 2019-01 | es_ES |
dc.identifier.issn | 1537-5110 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192165 | |
dc.description.abstract | [EN] Social media networks such as Facebook and Twitter can be used as a valuable tool to report on environmentally-related problems, e.g. landslides or wildfires, that are about to occur or have just occurred, so that response actions can be promptly executed. The goal of this article is to describe a knowledge-based system that is able to analyse tweets in Spanish to detect a variety of such problems. This research resulted in the implementation of CASPER, a proof-of-concept workbench where multi-domain problem detection has been devised as a two-fold task: topic categorisation and sentiment analysis. (C) 2018 IAgrE. Published by Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | Financial support for this research has been provided by the Spanish Ministry of Economy, Industry and Competitiveness [grant number TIN2016-78799-P] (AEI/FEDER, EU) and by the Spanish Ministry of Education and Science [grant number FFI2014-53788-C3-1-P] | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Biosystems Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | es_ES | |
dc.subject | Social sensor | es_ES |
dc.subject | Problem detection | es_ES |
dc.subject | Topic categorisation | es_ES |
dc.subject | Sentiment analysis | es_ES |
dc.subject.classification | FILOLOGIA INGLESA | es_ES |
dc.title | Detecting environmentally-related problems on Twitter | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.biosystemseng.2018.10.001 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministerio de Economía y Competitividad//FFI2014-53788-C3-1-P//Desarrollo de un laboratorio virtual para el procesamiento computacional del lenguaje natural desde un paradigma funcional/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-78799-13/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Periñán-Pascual, C.; Arcas-Túnez, F. (2019). Detecting environmentally-related problems on Twitter. Biosystems Engineering. 177:31-48. https://doi.org/10.1016/j.biosystemseng.2018.10.001 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.biosystemseng.2018.10.001 | es_ES |
dc.description.upvformatpinicio | 31 | es_ES |
dc.description.upvformatpfin | 48 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 177 | es_ES |
dc.relation.pasarela | S\404513 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |