- -

Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodriguez-Belenguer, Pablo es_ES
dc.contributor.author Kopanska, Karolina es_ES
dc.contributor.author Llopis-Lorente, Jordi es_ES
dc.contributor.author Trenor Gomis, Beatriz Ana es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Pastor, Manuel es_ES
dc.date.accessioned 2023-03-02T19:01:37Z
dc.date.available 2023-03-02T19:01:37Z
dc.date.issued 2023-03 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192259
dc.description.abstract [EN] Background and Objective In silico prediction of drug-induced ventricular arrhythmia often requires computationally intensive simulations, making its application tedious and non-interactive. This inconvenience can be mitigated using matrices of precomputed simulation results, allowing instantaneous computation of biomarkers such as action potential duration at 90% of the repolarisation (APD90). However, preparing such matrices can be computationally intensive for the method developers, limiting the range of simulated conditions. In this work, we aim to optimise the generation of these matrices so that they can be obtained with less effort and for a broader range of input values. Methods Machine learning methods were applied, building models trained with only a small fraction of the originally simulated results. The predictive performances of the models were assessed by comparing their predicted values with the actual simulation results, using percentual mean absolute error and mean relative error, as well as the percentage of data with a relative error below 5%. Results Our method obtained highly accurate estimations of the original values, leading to a nearly one hundred-fold decrease in computation time. This method also allows precomputing more complex matrices, describing the effect of more ion channels on the APD90. The best results were obtained by applying Support Vector Machine models, which yielded errors below 1% in most cases. This approach was further validated by predicting the APD90 of a set of 12 CiPA compounds and exporting the optimal settings for predicting APD90 using a different set of ion channels, always with satisfactory results. Conclusions The proposed method effectively reduces the computational effort required to generate matrices of precomputed electrophysiological simulation values. The same approach can be applied in other fields where computationally costly simulations are applied repeatedly using slightly different input values. es_ES
dc.description.sponsorship The authors received funding from the eTRANSAFE project, Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777365, supported from European Union's Horizon 2020 and the EFPIA. We also received funding from the SimCardioTest supported by European Union¿s Horizon 2020 research and innovation programme under grant agreement No 101016496. J.L.L. is being funded by the Ministerio de Ciencia, Innovacion y Universidades for the Formacion de Profesorado Universitario (Grant Reference: FPU18/01659). The work was also partially support by the Dirección General de Política Científica de la Generalitat Valenciana (PROMETEO/ 2020/043). es_ES
dc.description.uri https://riunet.upv.es/handle/10251/183067
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.relation.uri https://riunet.upv.es/handle/10251/183067
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2023.107345 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101016496/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU18%2F01659//AYUDA PREDOCTORAL FPU-LLOPIS LORENTE. PROYECTO: DESARROLLO DE MODELOS MULTI-ESCALA DE CORAZON HUMANO Y HERRAMIENTAS COMPUTACIONALES PARA LA EVALUACION DE LA CARDIOTOXICIDAD DE FARMACOS EN CONDICIONES SANAS Y DE INSUFICIENCIA CARDIACA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777365/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2020%2F043//MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Rodriguez-Belenguer, P.; Kopanska, K.; Llopis-Lorente, J.; Trenor Gomis, BA.; Saiz Rodríguez, FJ.; Pastor, M. (2023). Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia. Computer Methods and Programs in Biomedicine. 230:1-10. https://doi.org/10.1016/j.cmpb.2023.107345 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2023.107345 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 230 es_ES
dc.identifier.pmid 36689808 es_ES
dc.relation.pasarela S\482368 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder MINISTERIO DE CIENCIA E INNOVACION es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem