Mostrar el registro completo del ítem
Rodriguez-Belenguer, P.; Kopanska, K.; Llopis-Lorente, J.; Trenor Gomis, BA.; Saiz Rodríguez, FJ.; Pastor, M. (2023). Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia. Computer Methods and Programs in Biomedicine. 230:1-10. https://doi.org/10.1016/j.cmpb.2023.107345
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192259
Título: | Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia | |
Autor: | Rodriguez-Belenguer, Pablo Kopanska, Karolina Pastor, Manuel | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Background and Objective
In silico prediction of drug-induced ventricular arrhythmia often requires computationally intensive simulations, making its application tedious and non-interactive. This inconvenience can ...[+]
|
|
Derechos de uso: | Reconocimiento (by) | |
Ítems relacionados: | https://riunet.upv.es/handle/10251/183067 | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.cmpb.2023.107345 | |
Código del Proyecto: |
|
|
Agradecimientos: |
The authors received funding from the eTRANSAFE project,
Innovative Medicines Initiative 2 Joint Undertaking under grant
agreement No 777365, supported from European Union's Horizon
2020 and the EFPIA. We also received ...[+]
|
|
Tipo: |
|
|
URL: | https://riunet.upv.es/handle/10251/183067 |