Mostrar el registro completo del ítem
Piniotis, G.; Gikas, V. (2023). Steel bridge structural damage detection using Ground-Based Radar Interferometry vibration measurements and deep learning Convolutional Neural Networks. En 5th Joint International Symposium on Deformation Monitoring (JISDM 2022). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/192267
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192267
Título: | Steel bridge structural damage detection using Ground-Based Radar Interferometry vibration measurements and deep learning Convolutional Neural Networks | |
Autor: | Piniotis, George Gikas, Vassilis | |
Fecha difusión: |
|
|
Resumen: |
[EN] This paper introduces a new, data-driven, vibration-based, damage detection strategy realized on an on-purpose built, Bailey type, steel bridge model (6.12 m x 1.80 m, scale 1:2.5) as part of the research work undertaken ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | |
ISBN: |
|
|
Fuente: |
|
|
Editorial: |
|
|
Versión del editor: | http://ocs.editorial.upv.es/index.php/JISDM/JISDM2022/paper/view/13931 | |
Título del congreso: |
|
|
Lugar del congreso: |
|
|
Fecha congreso: |
|
|
Tipo: |
|