- -

Automated damage detection for port structures using machine learning algorithms in heightfields

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automated damage detection for port structures using machine learning algorithms in heightfields

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hake, Frederic es_ES
dc.contributor.author Lippmann, Paula es_ES
dc.contributor.author Alkhatib, Hamza es_ES
dc.contributor.author Oettel, Vincent es_ES
dc.contributor.author Neumann, Ingo es_ES
dc.date.accessioned 2023-03-03T14:16:18Z
dc.date.available 2023-03-03T14:16:18Z
dc.date.issued 2023-01-27
dc.identifier.isbn 9788490489796
dc.identifier.uri http://hdl.handle.net/10251/192272
dc.description.abstract [EN] The ageing infrastructure in ports requires regular inspection. This inspection is currently carried out manually by divers who sense by hand the entire underwater infrastructure. This process is cost-intensive as it requires a considerable amount of time and manpower. To overcome these difficulties, we propose to scan the above and underwater port structure with a Multi-Sensor-System (MSS), and -by a fully automated process- classify the obtained point cloud into damaged and undamaged regions. The MSS consists of a high-resolution hydro-acoustic underwater multi-beam echo-sounder, an above-water profile laser scanner, and five HDR cameras. In addition to the IMU-GPS/GNSS method known from various applications, hybrid referencing with automatically tracking total stations is used for positioning. The main research idea is based on 3D data from TLS, multi-beam or dense image matching. To that aim, we build a rasterised heightfield of the point cloud of a harbour structure by subtracting a CADbased geometry. To do this, we fit regular shapes into the point cloud and determine the distance of the points to the geometry. This latter is propagated through a Convolutional Neural Network (CNN) which detects anomalies. We make use of two methods: the VGG19 Deep Neural Network (DNN) and Local-Outlier-Factors (LOF). We tested our approach on simulated training data and evaluated it on a real-world dataset in Lübeck, Germany measured by an MSS. We showed that our approach can achieve a fully automated, reproducible, quality-controlled damage detection that can analyse the whole structure instead of the sample wise manual method with divers. We were able to achieve valuable results for our application. es_ES
dc.description.sponsorship Open Access funding enabled and organized by Projekt DEAL. This research was funded by German Federal Ministry of Transport and Digital Infrastructure grant number 19H18011C. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th Joint International Symposium on Deformation Monitoring (JISDM 2022)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Damage detection es_ES
dc.subject Machine-learning es_ES
dc.subject Laserscanning es_ES
dc.subject Multibeam-echosounder es_ES
dc.subject Infrastructure es_ES
dc.title Automated damage detection for port structures using machine learning algorithms in heightfields es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMDV//19H18011C es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hake, F.; Lippmann, P.; Alkhatib, H.; Oettel, V.; Neumann, I. (2023). Automated damage detection for port structures using machine learning algorithms in heightfields. En 5th Joint International Symposium on Deformation Monitoring (JISDM 2022). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/192272 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 5th Joint International Symposium on Deformation Monitoring es_ES
dc.relation.conferencedate Junio 20-22, 2022 es_ES
dc.relation.conferenceplace València, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/JISDM/JISDM2022/paper/view/13640 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\13640 es_ES
dc.contributor.funder Bundesministerium für Digitales und Verkehr, Alemania es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem