- -

Deformation Analysis with Feature Voting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deformation Analysis with Feature Voting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bar, Omer es_ES
dc.contributor.author Even-Tzur, Gilad es_ES
dc.date.accessioned 2023-03-06T10:11:02Z
dc.date.available 2023-03-06T10:11:02Z
dc.date.issued 2023-01-27
dc.identifier.isbn 9788490489796
dc.identifier.uri http://hdl.handle.net/10251/192316
dc.description.abstract [EN] Deformation analysis of GNSS network is usually computed using precise coordinates of the monitoring network points. Coordinates change over time construct a velocity field, which is used to estimate fault model parameters. Estimation process of coordinates is affected by several factors such as measurement errors, datum definition and the measurements datum defect. Points defining the monitoring datum have position accuracies which can increase inaccuracies in velocity estimations and the datum defect could cause biases and instability in computing the velocity field. This research proposes an algorithm of estimating geometric fault parameters using feature voting – addressing changes over time in GNSS vectors. The algorithm selects best solution for specific data-sets using minimal squared-disclosure between data and a tested value set of the fault model parameters. We concentrate on geometric fault models which rely solely on geometry between fault-line and monitoring network points. Geometric fault models are ill-conditioned, combined with low-frequency nature data - numerical instability rises. Vectors were computed with scientific processing software (Bernese), with consistent processing parameters at all epochs. Additionally, several numerical processes were adopted to transform the low-frequency data into usable datasets. Test cases were based upon 8 northern sites in the Israel’s continuous operating permanent stations. Simulative data was created from a true solved epoch; then variety of epoch data-sets were introduced to the algorithm to compute pre-defined geometric fault model parameters. Test cases show that simulative data, without and with noises, introduced to the algorithm is suited for estimating model parameters properly. es_ES
dc.format.extent 4 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th Joint International Symposium on Deformation Monitoring (JISDM 2022)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject GNSS network es_ES
dc.subject GNSS es_ES
dc.subject Monitor network es_ES
dc.subject Deformation es_ES
dc.subject Feature voting es_ES
dc.title Deformation Analysis with Feature Voting es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bar, O.; Even-Tzur, G. (2023). Deformation Analysis with Feature Voting. En 5th Joint International Symposium on Deformation Monitoring (JISDM 2022). Editorial Universitat Politècnica de València. 533-536. http://hdl.handle.net/10251/192316 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 5th Joint International Symposium on Deformation Monitoring es_ES
dc.relation.conferencedate Junio 20-22, 2022 es_ES
dc.relation.conferenceplace València, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/JISDM/JISDM2022/paper/view/13775 es_ES
dc.description.upvformatpinicio 533 es_ES
dc.description.upvformatpfin 536 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\13775 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem