- -

Towards an automated machine learning and image processing supported procedure for crack monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards an automated machine learning and image processing supported procedure for crack monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parente, Luigi es_ES
dc.contributor.author Castagnetti, Cristina es_ES
dc.contributor.author Falvo, Eugenia es_ES
dc.contributor.author Rossi, Paolo es_ES
dc.contributor.author Grassi, Francesca es_ES
dc.contributor.author Mancini, Francesco es_ES
dc.contributor.author Capra, Alessandro es_ES
dc.date.accessioned 2023-03-07T08:36:50Z
dc.date.available 2023-03-07T08:36:50Z
dc.date.issued 2023-01-27
dc.identifier.isbn 9788490489796
dc.identifier.uri http://hdl.handle.net/10251/192376
dc.description.abstract [EN] Development of automated and remotely controlled procedures for accurate crack detection and analysis is an advantageous solution when compared to time-consuming and subjective crack examination conducted by operators. Recent studies have demonstrated that Machine Learning (ML) algorithms have sufficient potential for crack measurements. However, training of large amount of data is essential. When working on single sites with permanently installed fixed cameras adoption of ML solutions may be redundant. The purpose of this work is to assess the performance of a procedure for crack detection based on an easy to implement workflow supported by the use of ML and image processing algorithms. The datasets used in this work are composed of temporal sequence of single digital images. The workflow proposed includes three main modules covering acquisition, optimization and crack detection. Each module is automated and basic manual input by an operator is only required to train the classifier. The processing modules are implemented in modular open-source programs (e.g., ImageJ and Ilastik). Results obtained in controlled conditions led to a satisfactory level of detection (about 99% of the crack pattern detected). Experiments conducted on real-sites highlighted variable detection capabilities of the proposed approach (from 12 to 96%). The main limitation of the approach is the production of false-positive detection due to significant variation in illumination conditions. Further work is being conducted to define scalability of the approach and to verify deformation detection capabilities. es_ES
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th Joint International Symposium on Deformation Monitoring (JISDM 2022)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Detection es_ES
dc.subject Crack es_ES
dc.subject Image processing es_ES
dc.subject Machine learning es_ES
dc.subject Automation es_ES
dc.subject Monitoring es_ES
dc.subject Open-source es_ES
dc.title Towards an automated machine learning and image processing supported procedure for crack monitoring es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/JISDM2022.2022.13828
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Parente, L.; Castagnetti, C.; Falvo, E.; Rossi, P.; Grassi, F.; Mancini, F.; Capra, A. (2023). Towards an automated machine learning and image processing supported procedure for crack monitoring. En 5th Joint International Symposium on Deformation Monitoring (JISDM 2022). Editorial Universitat Politècnica de València. 237-242. https://doi.org/10.4995/JISDM2022.2022.13828 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 5th Joint International Symposium on Deformation Monitoring es_ES
dc.relation.conferencedate Junio 20-22, 2022 es_ES
dc.relation.conferenceplace València, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/JISDM/JISDM2022/paper/view/13828 es_ES
dc.description.upvformatpinicio 237 es_ES
dc.description.upvformatpfin 242 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\13828 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem