Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol. https://doi.org/10.1002/joc.3370060607
Alomar G, Grimalt M (2008) Un modelo de simultaneidad de las brisas marinas en Mallorca. In: Sigró J, Brunet M, i Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología (AEC), Ser. A
Angulo-Martínez M, Beguería S (2012) Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.04.063
[+]
Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol. https://doi.org/10.1002/joc.3370060607
Alomar G, Grimalt M (2008) Un modelo de simultaneidad de las brisas marinas en Mallorca. In: Sigró J, Brunet M, i Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología (AEC), Ser. A
Angulo-Martínez M, Beguería S (2012) Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.04.063
Arrillaga JA, Jiménez P, Vilà-Guerau de Arellano J et al (2020) Analyzing the synoptic-, meso- and local- scale involved in Sea Breeze formation and frontal characteristics. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031302
Arritt RW (1993) Effects of the large-scale flow on characteristic features of the sea breeze. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c0116:EOTLSF%3e2.0.CO;2
Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1997)125%3c2112:IOTSSF%3e2.0.CO;2
Azorin-Molina C, Chen D (2009) A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor Appl Climatol. https://doi.org/10.1007/s00704-008-0028-2
Azorin-Molina C, Lopez-Bustins JA (2008) An automated sea breeze selection technique based on regional sea-level pressure difference: WeMOi. Int J Climatol. https://doi.org/10.1002/joc.1663
Azorin-Molina C, Connell BH, Baena-Calatrava R (2009) Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J Appl Meteorol Climatol. https://doi.org/10.1175/2009JAMC2141.1
Azorin-Molina C, Chen D, Tijm S, Baldi M (2011a) A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). Int J Climatol. https://doi.org/10.1002/joc.2064
Azorin-Molina C, Tijm S, Chen D (2011b) Development of selection algorithms and databases for sea breeze studies. Theor Appl Climatol. https://doi.org/10.1007/s00704-011-0454-4
Azorin-Molina C, Vicente-Serrano SM, Mcvicar TR et al (2014a) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Clim. https://doi.org/10.1175/JCLI-D-13-00652.1
Azorin-Molina C, Tijm S, Ebert EE et al (2014b) Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts. Atmos Res. https://doi.org/10.1016/j.atmosres.2014.01.010
Azorin-Molina C, Tijm S, Ebert EE et al (2015) High resolution HIRLAM simulations of the role of low-level sea-breeze convergence in initiating deep moist convection in the eastern Iberian Peninsula. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-014-9961-z
Azorin-Molina C, Guijarro JA, McVicar TR et al (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res. https://doi.org/10.1002/2015JD024485
Azorin-Molina C, Rehman S, Guijarro JA et al (2018a) Recent trends in wind speed across Saudi Arabia, 1978–2013: a break in the stilling. Int J Climatol. https://doi.org/10.1002/joc.5423
Azorin-Molina C, Menendez M, McVicar TR et al (2018b) Wind speed variability over the Canary Islands, 1948–2014: focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim Dyn. https://doi.org/10.1007/s00382-017-3861-0
Azorin-Molina C, Guijarro JA, McVicar TR et al (2019) An approach to homogenize daily peak wind gusts: an application to the Australian series. Int J Climatol. https://doi.org/10.1002/joc.5949
Azorin-Molina C, McVicar TR, Guijarro JA et al (2021) A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941–2016. J Clim. https://doi.org/10.1175/JCLI-D-20-0590.1
Azorin-Molina C, Martín-Vide J (2007) Methodological approach to the study of the daily persistence of the sea breeze in Alicante (Spain). Atmosfera
Bei N, Zhao L, Wu J et al (2018) Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): a case study. Environ Pollut. https://doi.org/10.1016/j.envpol.2017.11.066
Berri GJ, Dezzutti M (2020) A sea-breeze case study in the La Plata River Region using local observations, satellite images, and model simulations. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00548-3
Birch CE, Roberts MJ, Garcia-Carreras L et al (2015) Sea-breeze dynamics and convection initiation: the influence of convective parameterization in weather and climate model biases. J Clim. https://doi.org/10.1175/JCLI-D-14-00850.1
Brunetti M, Maugeri M, Nanni T et al (2006) Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006674
Cana L, Grisolía-Santos D, Hernández-Guerra A (2020) A numerical study of a Sea Breeze at Fuerteventura Island, Canary Islands, Spain. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00506-z
Cafaro C, Frame THA, Methven J et al (2019) The added value of convection-permitting ensemble forecasts of sea breeze compared to a Bayesian forecast driven by the global ensemble. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3531
Chen D, Rodhe H, Emanuel K et al (2020) Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus Ser B Chem Phys Meteorol. https://doi.org/10.1080/16000889.2020.1794236
Corell D, Estrela MJ, Valiente JA et al (2020) Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003–2012. Int J Climatol. https://doi.org/10.1002/joc.6398
Coulibaly A, Omotosho BJ, Sylla MB et al (2019) Characteristics of land and sea breezes along the Guinea Coast of West Africa. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02882-0
Cresswell-Clay N, Ummenhofer CC, Thatcher DL et al (2022) Twentieth-century Azores High expansion unprecedented in the past 1,200 years. Nat Geosci. https://doi.org/10.1038/s41561-022-00971-w
Crosman ET, Horel JD (2010) Sea and lake Breezes: a review of numerical studies. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-010-9517-9
Curci G, Guijarro JA, Di Antonio L et al (2021) Building a local climate reference dataset: application to the Abruzzo region (Central Italy), 1930–2019. Int J Climatol. https://doi.org/10.1002/joc.7081
Davis SR, Farrar JT, Weller RA et al (2019) The land-sea Breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031007
Real ÁD, Sanchez-Lorenzo A, Lopez-Bustins JA et al (2021) Atmospheric circulation and mortality by unintentional drowning in Spain: from 1999 to 2018. Perspect Public Health. https://doi.org/10.1177/17579139211007181
Deng K, Azorin-Molina C, Minola L et al (2021) Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J Clim. https://doi.org/10.1175/JCLI-D-20-0310.1
Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0506042102
Domínguez-Castro F, Vaquero JM, Rodrigo FS et al (2014) Early Spanish meteorological records (1780–1850). Int J Climatol. https://doi.org/10.1002/joc.3709
Drobinski P, Bastin S, Arsouze T et al (2018) North-western Mediterranean sea-breeze circulation in a regional climate system model. Clim Dyn. https://doi.org/10.1007/s00382-017-3595-z
El-Geziry TM, Elbessa M, Tonbol KM (2021) Climatology of Sea-Land Breezes along the Southern Coast of the Levantine Basin. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02726-x
Fernández-González S, Del Río S, Castro A et al (2012) Connection between NAO, weather types and precipitation in León, Spain (1948–2008). Int J Climatol. https://doi.org/10.1002/joc.2431
Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic oscillation: past, present, and future. J Clim. https://doi.org/10.1175/2008JCLI2459.1
Furberg M, Steyn DG, Baldi M (2002) The climatology of sea breezes on Sardinia. Int J Climatol. https://doi.org/10.1002/joc.780
Gallego D, Garcia-Herrera R, Calvo N, Ribera P (2007) A new meteorological record for Cádiz (Spain) 1806–1852: Implications for climatic reconstructions. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008517
Gavit P, Baddour Y, Tholmer R (2009) Use of change-point analysis for process monitoring and control. BioPharm Int.
Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2007.09.005
Grau A, Jiménez MA, Cuxart J (2021) Statistical characterization of the sea-breeze physical mechanisms through in-situ and satellite observations. Int J Climatol. https://doi.org/10.1002/joc.6606
Guedje FK, Houeto AVV, Houngninou EB et al (2019) Climatology of coastal wind regimes in Benin. Meteorol Zeitschrift. https://doi.org/10.1127/metz/2019/0930
Guijarro JA (2018) Homogenization of climatic series with Climatol. State Meteorol Agency (AEMET), Balear Islands Off Spain
Guion A, Turquety S, Polcher J et al (2021) Droughts and heatwaves in the Western Mediterranean: impact on vegetation and wildfires using the coupled WRF-ORCHIDEE regional model (RegIPSL). Clim Dyn. https://doi.org/10.1007/s00382-021-05938-y
Haarsma RJ, Selten F, Vd HB et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett. https://doi.org/10.1029/2008GL036617
Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. https://doi.org/10.1016/S0022-1694(97)00125-X
Hwang H, Eun SH, Kim BG et al (2020) Occurrence characteristics of Sea Breeze in the Gangneung region for 2009–2018. Atmosphere (basel). https://doi.org/10.14191/ATMOS.2020.30.3.221
Jenkinson AF, Collison BP (1977) An initial climatology of gales over the North Sea Synoptic Climatol. Branch Memo. 62, Met Office, Bracknell, p 18
Jerez S, Montavez JP, Gomez-Navarro JJ et al (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016576
Jiang Y, Luo Y, Zhao Z, Tao S (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol. https://doi.org/10.1007/s00704-009-0152-7
Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol. https://doi.org/10.1002/(sici)1097-0088(19971115)17:13%3c1433::aid-joc203%3e3.0.co;2-p
Khan B, Abualnaja Y, Al-Subhi AM et al (2018) Climatology of sea breezes along the Red Sea coast of Saudi Arabia. Int J Climatol. https://doi.org/10.1002/joc.5523
Kim JC, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn. https://doi.org/10.1007/s00382-015-2546-9
Kottmeier C, Palacio-Sese P, Kalthoff N et al (2000) Sea breezes and coastal jets in southeastern Spain. Int J Climatol. https://doi.org/10.1002/1097-0088(20001130)20:14%3c1791::AID-JOC574%3e3.0.CO;2-I
Kusaka H, Kimura F, Hirakuchi H, Mizutori M (2000) The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J Meteorol Soc Jpn. https://doi.org/10.2151/jmsj1965.78.4_405
Laird NF, Kristovich DAR, Liang XZ et al (2001) Lake Michigan Lake Breezes: climatology, local forcing, and Synoptic environment. J Appl Meteorol. https://doi.org/10.1175/1520-0450(2001)040%3c0409:LMLBCL%3e2.0.CO;2
Lamb HH (1950) Types and spells of weather around the year in the British Isles : annual trends, seasonal structure of the year, singularities. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49707633005
Laurila TK, Sinclair VA, Gregow H (2021) Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int J Climatol. https://doi.org/10.1002/joc.6957
Lebassi-Habtezion B, Gonzlez J, Bornstein R (2011) Modeled large-scale warming impacts on summer California coastal-cooling trends. J Geophys Res Atmos. https://doi.org/10.1029/2011JD015759
Liang Z, Wang D (2017) Sea breeze and precipitation over Hainan Island. Q J R Meteorol Soc 143(702):137–151
Mahrer Y, Rytwo G (1991) Modelling and measuring evapotranspiration in a daily drip irrigated cotton field. Irrig Sci. https://doi.org/10.1007/BF00190704
Marshall CH, Pielke RA, Steyaert LT, Willard DA (2004) The impact of anthropogenic land-cover change on the Florida Peninsula Sea Breezes and warm season sensible weather. Mon Weather Rev. https://doi.org/10.1175/1520-0493(2004)132%3c0028:TIOALC%3e2.0.CO;2
Martinez-Artigas J, Lemus-Canovas M, Lopez-Bustins JA (2021) Precipitation in peninsular Spain: influence of teleconnection indices and spatial regionalisation. Int J Climatol. https://doi.org/10.1002/joc.6770
Martin-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol. https://doi.org/10.1002/joc.1388
Masselink G, Pattiaratchi CB (2001) Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J Coast Res
McVicar TR, Roderick ML (2010) Atmospheric science: Winds of change. Nat Geosci. https://doi.org/10.1038/ngeo1002
Miao JF, Kroon LJM, Vilà-Guerau de Arellano J, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-002-0579-1
Millán MM (2014) Extreme hydrometeorological events and climate change predictions in Europe. J Hydrol. https://doi.org/10.1016/j.jhydrol.2013.12.041
Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Clim. https://doi.org/10.1175/JCLI3426.1
Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys. https://doi.org/10.1029/2003RG000124
Minola L, Azorin-Molina C, Chen D (2016) Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J Clim. https://doi.org/10.1175/JCLI-D-15-0636.1
Minola L, Zhang F, Azorin-Molina C et al (2020) Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim Dyn. https://doi.org/10.1007/s00382-020-05302-6
Minola L, Reese H, Lai HW et al (2022) Wind stilling-reversal across Sweden: the impact of land-use and large-scale atmospheric circulation changes. Int J Climatol. https://doi.org/10.1002/joc.7289
Misra V, Moeller L, Stefanova L et al (2011) The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze. J Geophys Res Atmos. https://doi.org/10.1029/2010JD015367
Morán-Tejeda E, Bazo J, López-Moreno JI et al (2016) Climate trends and variability in Ecuador (1966–2011). Int J Climatol. https://doi.org/10.1002/joc.4597
Olcina-Cantos J, Azorin-Molina C (2004) The meteorological importance of sea-breezes in the Levant region of Spain. Weather. https://doi.org/10.1256/wea.176.03
Otero N, Sillmann J, Butler T (2018) Assessment of an extended version of the Jenkinson-Collison classification on CMIP5 models over Europe. Clim Dyn. https://doi.org/10.1007/s00382-017-3705-y
Palutikof J (2003) Analysis of mediterranean climate data: measured and modelled. In: Bolle HJ (eds) Mediterranean climate. Regional climate studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55657-9_6
Papanastasiou DK, Melas D (2009) Climatology and impact on air quality of sea breeze in an urban coastal environment. Int J Climatol. https://doi.org/10.1002/joc.1707
Papanastasiou DK, Melas D, Bartzanas T, Kittas C (2010) Temperature, comfort and pollution levels during heat waves and the role of sea breeze. Int J Biometeorol. https://doi.org/10.1007/s00484-009-0281-9
Pastor F, Valiente JA, Estrela MJ (2015) Sea surface temperature and torrential rains in the Valencia region: Modelling the role of recharge areas. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-15-1677-2015
Pausas JG, Millán MM (2019) Greening and browning in a climate change hotspot: the Mediterranean Basin. Bioscience. https://doi.org/10.1093/biosci/biy157
Pazandeh-Masouleh Z, Walker DJ, Crowther JMC (2019) A long-term study of sea-breeze characteristics: a case study of the coastal city of Adelaide. J Appl Meteorol Climatol. https://doi.org/10.1175/JAMC-D-17-0251.1
Perez GMP, Silva Dias MAF (2017) Long-term study of the occurrence and time of passage of sea breeze in São Paulo, 1960–2009. Int J Climatol. https://doi.org/10.1002/joc.5077
Qian T, Epifanio CC, Zhang F (2012) Topographic effects on the tropical land and sea breeze. J Atmos Sci. https://doi.org/10.1175/JAS-D-11-011.1
Ramis C, Alonso S (1988) Sea-breeze convergence line in Majorca: a satellite observation. Weather. https://doi.org/10.1002/j.1477-8696.1988.tb03941.x
Ramon J, Lledó L, Torralba V et al (2019) What global reanalysis best represents near-surface winds? Q J R Meteorol Soc. https://doi.org/10.1002/qj.3616
Redaño A, Cruz J, Lorente J (1991) Main features of the sea-breeze in Barcelona. Meteorol Atmos Phys. https://doi.org/10.1007/BF01027342
Robinson FJ, Patterson MD, Sherwood SC (2013) A numerical modeling study of the propagation of idealized sea-breeze density currents. J Atmos Sci. https://doi.org/10.1175/JAS-D-12-0113.1
Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett. https://doi.org/10.1029/2007GL031166
Rojas M, Li LZ, Kanakidou M et al (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn. https://doi.org/10.1007/s00382-013-1823-8
Salvador R, Millán M (2003) Análisis histórico de las brisas en Castellón. Tethys 2:37–51
Seager R, Osborn TJ, Kushnir Y et al (2019) Climate variability and change of mediterranean-type climates. J Clim. https://doi.org/10.1175/JCLI-D-18-0472.1
Shen L, Zhao C (2020) Dominance of shortwave radiative heating in the Sea-Land Breeze amplitude and its impacts on atmospheric visibility in Tokyo, Japan. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031541
Shen L, Zhao C, Ma Z et al (2019) Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.05.007
Shen L, Zhao C, Yang X (2021a) Insight into the seasonal variations of the Sea-Land Breeze in Los Angeles with respect to the effects of solar radiation and climate type. J Geophys Res Atmos. https://doi.org/10.1029/2020JD033197
Shen L, Zhao C, Yang X (2021b) Climate-driven characteristics of Sea-Land Breezes over the globe. Geophys Res Lett. https://doi.org/10.1029/2020GL092308
Shen L, Zhao C, Yang X (2022) A new perspective on surface wind speed variation with respect to the contribution of sea-land breezes. Atmos Res. https://doi.org/10.1016/J.ATMOSRES.2022.106226
Simpson JE (1996) Sea breeze and local winds. Cambridge University Press. https://doi.org/10.2277/0521452112
Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea-breeze fronts. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49710343504
Steele CJ, Dorling SR, Von Glasow R, Bacon J (2015) Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2484
Sydeman WJ, García-Reyes M, Schoeman DS et al (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science (80–). https://doi.org/10.1126/science.1251635
Troccoli A, Muller K, Coppin P et al (2012) Long-term wind speed trends over Australia. J Clim. https://doi.org/10.1175/2011JCLI4198.1
Tuel A, Eltahir EAB (2020) Why is the Mediterranean a climate change hot spot? J Clim. https://doi.org/10.1175/JCLI-D-19-0910.1
Vahmani P, Ban-Weiss G (2016) Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys Res Lett. https://doi.org/10.1002/2016GL069658
Vahmani P, Sun F, Hall A, Ban-Weiss G (2016) Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/12/124027
Vautard R, Cattiaux J, Yiou P et al (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. https://doi.org/10.1038/ngeo979
Wu J, Zha J, Zhao D, Yang Q (2018) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn. https://doi.org/10.1007/s00382-017-3997-y
Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science (80–). https://doi.org/10.1126/science.aav9527
Zappa G, Hawcroft MK, Shaffrey L et al (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn. https://doi.org/10.1007/s00382-014-2426-8
Zecchetto S, De Biasio F (2007) Sea surface winds over the Mediterranean basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2498.1
Zeng Z, Ziegler AD, Searchinger T et al (2019) A reversal in global terrestrial stilling and its implications for wind energy production. Nat Clim Chang. https://doi.org/10.1038/s41558-019-0622-6
Zha J, Shen C, Li Z et al (2021) Projected changes in global terrestrial near-surface wind speed in 15–40 °C global warming levels. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac2fdd
Zhang X, Lu C, Guan Z (2012) Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ Res Lett. https://doi.org/10.1088/1748-9326/7/4/044044
Zhang G, Azorin-Molina C, Chen D et al (2020) Variability of daily maximum wind speed across China, 1975–2016: an examination of likely causes. J Clim. https://doi.org/10.1175/JCLI-D-19-0603.1
Zhang N, Wang Y (2021) Mechanisms for the isolated convections triggered by the sea breeze front and the urban heat Island. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-021-00800-6
Zhong S, Takle ES (1993) The effects of large-scale winds on the sea-land-breeze circulations in an area of complex coastal heating. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c1181:teolsw%3e2.0.co;2
Zhu M, Atkinson BW (2004) Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf. Int J Climatol. https://doi.org/10.1002/joc.1045
Zhu L, Meng Z, Zhang F, Markowski PM (2017) The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos Chem Phys. https://doi.org/10.5194/acp-17-13213-2017
[-]