- -

Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019

Mostrar el registro completo del ítem

Bedoya-Valestt, S.; Azorin-Molina, C.; Gimeno, L.; Guijarro, JA.; Sánchez Morcillo, VJ.; Aguilar, E.; Brunet, M. (2022). Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019. Climate Dynamics. 1-23. https://doi.org/10.1007/s00382-022-06473-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192411

Ficheros en el ítem

Metadatos del ítem

Título: Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019
Autor: Bedoya-Valestt, Shalenys Azorin-Molina, Cesar Gimeno, Luis Guijarro, Jose A. Sánchez Morcillo, Víctor José Aguilar, Enric Brunet, Manola
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
[EN] Most studies on wind variability have deepened into the stilling vs. reversal phenomena at global to regional scales, while the long-term changes in local-scale winds such as sea-breezes (SB) represent a gap of knowledge ...[+]
Palabras clave: Sea breeze speeds and gusts , Occurrence , Changes , Atmospheric circulation , Eastern Spain
Derechos de uso: Reconocimiento (by)
Fuente:
Climate Dynamics. (issn: 0930-7575 )
DOI: 10.1007/s00382-022-06473-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00382-022-06473-0
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095749-A-I00/ES/EVALUACION Y ATRIBUCION DE LA VARIABILIDAD DE LA VELOCIDAD MEDIA Y LAS RACHAS MAXIMAS DE VIENTO: CAUSAS DEL FENOMENO STILLING/
info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F023/
info:eu-repo/grantAgreement/MINECO//RYC-2017-22830//Ramon y Cajal fellowship/
Agradecimientos:
We thank AEMET for the observed wind speed data. This research was funded by the following projects: IBER-STILLING (RTI2018-095749-A-I00, MCIU/AEI/FEDER,UE); VENTS (GVA-AICO/2021/023) and the CSIC Interdisciplinary ...[+]
Tipo: Artículo

References

Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol. https://doi.org/10.1002/joc.3370060607

Alomar G, Grimalt M (2008) Un modelo de simultaneidad de las brisas marinas en Mallorca. In: Sigró J, Brunet M, i Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología (AEC), Ser. A

Angulo-Martínez M, Beguería S (2012) Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.04.063 [+]
Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol. https://doi.org/10.1002/joc.3370060607

Alomar G, Grimalt M (2008) Un modelo de simultaneidad de las brisas marinas en Mallorca. In: Sigró J, Brunet M, i Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología (AEC), Ser. A

Angulo-Martínez M, Beguería S (2012) Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.04.063

Arrillaga JA, Jiménez P, Vilà-Guerau de Arellano J et al (2020) Analyzing the synoptic-, meso- and local- scale involved in Sea Breeze formation and frontal characteristics. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031302

Arritt RW (1993) Effects of the large-scale flow on characteristic features of the sea breeze. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c0116:EOTLSF%3e2.0.CO;2

Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1997)125%3c2112:IOTSSF%3e2.0.CO;2

Azorin-Molina C, Chen D (2009) A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor Appl Climatol. https://doi.org/10.1007/s00704-008-0028-2

Azorin-Molina C, Lopez-Bustins JA (2008) An automated sea breeze selection technique based on regional sea-level pressure difference: WeMOi. Int J Climatol. https://doi.org/10.1002/joc.1663

Azorin-Molina C, Connell BH, Baena-Calatrava R (2009) Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J Appl Meteorol Climatol. https://doi.org/10.1175/2009JAMC2141.1

Azorin-Molina C, Chen D, Tijm S, Baldi M (2011a) A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). Int J Climatol. https://doi.org/10.1002/joc.2064

Azorin-Molina C, Tijm S, Chen D (2011b) Development of selection algorithms and databases for sea breeze studies. Theor Appl Climatol. https://doi.org/10.1007/s00704-011-0454-4

Azorin-Molina C, Vicente-Serrano SM, Mcvicar TR et al (2014a) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Clim. https://doi.org/10.1175/JCLI-D-13-00652.1

Azorin-Molina C, Tijm S, Ebert EE et al (2014b) Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts. Atmos Res. https://doi.org/10.1016/j.atmosres.2014.01.010

Azorin-Molina C, Tijm S, Ebert EE et al (2015) High resolution HIRLAM simulations of the role of low-level sea-breeze convergence in initiating deep moist convection in the eastern Iberian Peninsula. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-014-9961-z

Azorin-Molina C, Guijarro JA, McVicar TR et al (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res. https://doi.org/10.1002/2015JD024485

Azorin-Molina C, Rehman S, Guijarro JA et al (2018a) Recent trends in wind speed across Saudi Arabia, 1978–2013: a break in the stilling. Int J Climatol. https://doi.org/10.1002/joc.5423

Azorin-Molina C, Menendez M, McVicar TR et al (2018b) Wind speed variability over the Canary Islands, 1948–2014: focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim Dyn. https://doi.org/10.1007/s00382-017-3861-0

Azorin-Molina C, Guijarro JA, McVicar TR et al (2019) An approach to homogenize daily peak wind gusts: an application to the Australian series. Int J Climatol. https://doi.org/10.1002/joc.5949

Azorin-Molina C, McVicar TR, Guijarro JA et al (2021) A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941–2016. J Clim. https://doi.org/10.1175/JCLI-D-20-0590.1

Azorin-Molina C, Martín-Vide J (2007) Methodological approach to the study of the daily persistence of the sea breeze in Alicante (Spain). Atmosfera

Bei N, Zhao L, Wu J et al (2018) Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): a case study. Environ Pollut. https://doi.org/10.1016/j.envpol.2017.11.066

Berri GJ, Dezzutti M (2020) A sea-breeze case study in the La Plata River Region using local observations, satellite images, and model simulations. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00548-3

Birch CE, Roberts MJ, Garcia-Carreras L et al (2015) Sea-breeze dynamics and convection initiation: the influence of convective parameterization in weather and climate model biases. J Clim. https://doi.org/10.1175/JCLI-D-14-00850.1

Brunetti M, Maugeri M, Nanni T et al (2006) Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006674

Cana L, Grisolía-Santos D, Hernández-Guerra A (2020) A numerical study of a Sea Breeze at Fuerteventura Island, Canary Islands, Spain. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00506-z

Cafaro C, Frame THA, Methven J et al (2019) The added value of convection-permitting ensemble forecasts of sea breeze compared to a Bayesian forecast driven by the global ensemble. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3531

Chen D, Rodhe H, Emanuel K et al (2020) Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus Ser B Chem Phys Meteorol. https://doi.org/10.1080/16000889.2020.1794236

Corell D, Estrela MJ, Valiente JA et al (2020) Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003–2012. Int J Climatol. https://doi.org/10.1002/joc.6398

Coulibaly A, Omotosho BJ, Sylla MB et al (2019) Characteristics of land and sea breezes along the Guinea Coast of West Africa. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02882-0

Cresswell-Clay N, Ummenhofer CC, Thatcher DL et al (2022) Twentieth-century Azores High expansion unprecedented in the past 1,200 years. Nat Geosci. https://doi.org/10.1038/s41561-022-00971-w

Crosman ET, Horel JD (2010) Sea and lake Breezes: a review of numerical studies. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-010-9517-9

Curci G, Guijarro JA, Di Antonio L et al (2021) Building a local climate reference dataset: application to the Abruzzo region (Central Italy), 1930–2019. Int J Climatol. https://doi.org/10.1002/joc.7081

Davis SR, Farrar JT, Weller RA et al (2019) The land-sea Breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031007

Real ÁD, Sanchez-Lorenzo A, Lopez-Bustins JA et al (2021) Atmospheric circulation and mortality by unintentional drowning in Spain: from 1999 to 2018. Perspect Public Health. https://doi.org/10.1177/17579139211007181

Deng K, Azorin-Molina C, Minola L et al (2021) Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J Clim. https://doi.org/10.1175/JCLI-D-20-0310.1

Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0506042102

Domínguez-Castro F, Vaquero JM, Rodrigo FS et al (2014) Early Spanish meteorological records (1780–1850). Int J Climatol. https://doi.org/10.1002/joc.3709

Drobinski P, Bastin S, Arsouze T et al (2018) North-western Mediterranean sea-breeze circulation in a regional climate system model. Clim Dyn. https://doi.org/10.1007/s00382-017-3595-z

El-Geziry TM, Elbessa M, Tonbol KM (2021) Climatology of Sea-Land Breezes along the Southern Coast of the Levantine Basin. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02726-x

Fernández-González S, Del Río S, Castro A et al (2012) Connection between NAO, weather types and precipitation in León, Spain (1948–2008). Int J Climatol. https://doi.org/10.1002/joc.2431

Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic oscillation: past, present, and future. J Clim. https://doi.org/10.1175/2008JCLI2459.1

Furberg M, Steyn DG, Baldi M (2002) The climatology of sea breezes on Sardinia. Int J Climatol. https://doi.org/10.1002/joc.780

Gallego D, Garcia-Herrera R, Calvo N, Ribera P (2007) A new meteorological record for Cádiz (Spain) 1806–1852: Implications for climatic reconstructions. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008517

Gavit P, Baddour Y, Tholmer R (2009) Use of change-point analysis for process monitoring and control. BioPharm Int.

Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2007.09.005

Grau A, Jiménez MA, Cuxart J (2021) Statistical characterization of the sea-breeze physical mechanisms through in-situ and satellite observations. Int J Climatol. https://doi.org/10.1002/joc.6606

Guedje FK, Houeto AVV, Houngninou EB et al (2019) Climatology of coastal wind regimes in Benin. Meteorol Zeitschrift. https://doi.org/10.1127/metz/2019/0930

Guijarro JA (2018) Homogenization of climatic series with Climatol. State Meteorol Agency (AEMET), Balear Islands Off Spain

Guion A, Turquety S, Polcher J et al (2021) Droughts and heatwaves in the Western Mediterranean: impact on vegetation and wildfires using the coupled WRF-ORCHIDEE regional model (RegIPSL). Clim Dyn. https://doi.org/10.1007/s00382-021-05938-y

Haarsma RJ, Selten F, Vd HB et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett. https://doi.org/10.1029/2008GL036617

Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. https://doi.org/10.1016/S0022-1694(97)00125-X

Hwang H, Eun SH, Kim BG et al (2020) Occurrence characteristics of Sea Breeze in the Gangneung region for 2009–2018. Atmosphere (basel). https://doi.org/10.14191/ATMOS.2020.30.3.221

Jenkinson AF, Collison BP (1977) An initial climatology of gales over the North Sea Synoptic Climatol. Branch Memo. 62, Met Office, Bracknell, p 18

Jerez S, Montavez JP, Gomez-Navarro JJ et al (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016576

Jiang Y, Luo Y, Zhao Z, Tao S (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol. https://doi.org/10.1007/s00704-009-0152-7

Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol. https://doi.org/10.1002/(sici)1097-0088(19971115)17:13%3c1433::aid-joc203%3e3.0.co;2-p

Khan B, Abualnaja Y, Al-Subhi AM et al (2018) Climatology of sea breezes along the Red Sea coast of Saudi Arabia. Int J Climatol. https://doi.org/10.1002/joc.5523

Kim JC, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn. https://doi.org/10.1007/s00382-015-2546-9

Kottmeier C, Palacio-Sese P, Kalthoff N et al (2000) Sea breezes and coastal jets in southeastern Spain. Int J Climatol. https://doi.org/10.1002/1097-0088(20001130)20:14%3c1791::AID-JOC574%3e3.0.CO;2-I

Kusaka H, Kimura F, Hirakuchi H, Mizutori M (2000) The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J Meteorol Soc Jpn. https://doi.org/10.2151/jmsj1965.78.4_405

Laird NF, Kristovich DAR, Liang XZ et al (2001) Lake Michigan Lake Breezes: climatology, local forcing, and Synoptic environment. J Appl Meteorol. https://doi.org/10.1175/1520-0450(2001)040%3c0409:LMLBCL%3e2.0.CO;2

Lamb HH (1950) Types and spells of weather around the year in the British Isles : annual trends, seasonal structure of the year, singularities. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49707633005

Laurila TK, Sinclair VA, Gregow H (2021) Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int J Climatol. https://doi.org/10.1002/joc.6957

Lebassi-Habtezion B, Gonzlez J, Bornstein R (2011) Modeled large-scale warming impacts on summer California coastal-cooling trends. J Geophys Res Atmos. https://doi.org/10.1029/2011JD015759

Liang Z, Wang D (2017) Sea breeze and precipitation over Hainan Island. Q J R Meteorol Soc 143(702):137–151

Mahrer Y, Rytwo G (1991) Modelling and measuring evapotranspiration in a daily drip irrigated cotton field. Irrig Sci. https://doi.org/10.1007/BF00190704

Marshall CH, Pielke RA, Steyaert LT, Willard DA (2004) The impact of anthropogenic land-cover change on the Florida Peninsula Sea Breezes and warm season sensible weather. Mon Weather Rev. https://doi.org/10.1175/1520-0493(2004)132%3c0028:TIOALC%3e2.0.CO;2

Martinez-Artigas J, Lemus-Canovas M, Lopez-Bustins JA (2021) Precipitation in peninsular Spain: influence of teleconnection indices and spatial regionalisation. Int J Climatol. https://doi.org/10.1002/joc.6770

Martin-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol. https://doi.org/10.1002/joc.1388

Masselink G, Pattiaratchi CB (2001) Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J Coast Res

McVicar TR, Roderick ML (2010) Atmospheric science: Winds of change. Nat Geosci. https://doi.org/10.1038/ngeo1002

Miao JF, Kroon LJM, Vilà-Guerau de Arellano J, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-002-0579-1

Millán MM (2014) Extreme hydrometeorological events and climate change predictions in Europe. J Hydrol. https://doi.org/10.1016/j.jhydrol.2013.12.041

Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Clim. https://doi.org/10.1175/JCLI3426.1

Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys. https://doi.org/10.1029/2003RG000124

Minola L, Azorin-Molina C, Chen D (2016) Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J Clim. https://doi.org/10.1175/JCLI-D-15-0636.1

Minola L, Zhang F, Azorin-Molina C et al (2020) Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim Dyn. https://doi.org/10.1007/s00382-020-05302-6

Minola L, Reese H, Lai HW et al (2022) Wind stilling-reversal across Sweden: the impact of land-use and large-scale atmospheric circulation changes. Int J Climatol. https://doi.org/10.1002/joc.7289

Misra V, Moeller L, Stefanova L et al (2011) The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze. J Geophys Res Atmos. https://doi.org/10.1029/2010JD015367

Morán-Tejeda E, Bazo J, López-Moreno JI et al (2016) Climate trends and variability in Ecuador (1966–2011). Int J Climatol. https://doi.org/10.1002/joc.4597

Olcina-Cantos J, Azorin-Molina C (2004) The meteorological importance of sea-breezes in the Levant region of Spain. Weather. https://doi.org/10.1256/wea.176.03

Otero N, Sillmann J, Butler T (2018) Assessment of an extended version of the Jenkinson-Collison classification on CMIP5 models over Europe. Clim Dyn. https://doi.org/10.1007/s00382-017-3705-y

Palutikof J (2003) Analysis of mediterranean climate data: measured and modelled. In: Bolle HJ (eds) Mediterranean climate. Regional climate studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55657-9_6

Papanastasiou DK, Melas D (2009) Climatology and impact on air quality of sea breeze in an urban coastal environment. Int J Climatol. https://doi.org/10.1002/joc.1707

Papanastasiou DK, Melas D, Bartzanas T, Kittas C (2010) Temperature, comfort and pollution levels during heat waves and the role of sea breeze. Int J Biometeorol. https://doi.org/10.1007/s00484-009-0281-9

Pastor F, Valiente JA, Estrela MJ (2015) Sea surface temperature and torrential rains in the Valencia region: Modelling the role of recharge areas. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-15-1677-2015

Pausas JG, Millán MM (2019) Greening and browning in a climate change hotspot: the Mediterranean Basin. Bioscience. https://doi.org/10.1093/biosci/biy157

Pazandeh-Masouleh Z, Walker DJ, Crowther JMC (2019) A long-term study of sea-breeze characteristics: a case study of the coastal city of Adelaide. J Appl Meteorol Climatol. https://doi.org/10.1175/JAMC-D-17-0251.1

Perez GMP, Silva Dias MAF (2017) Long-term study of the occurrence and time of passage of sea breeze in São Paulo, 1960–2009. Int J Climatol. https://doi.org/10.1002/joc.5077

Qian T, Epifanio CC, Zhang F (2012) Topographic effects on the tropical land and sea breeze. J Atmos Sci. https://doi.org/10.1175/JAS-D-11-011.1

Ramis C, Alonso S (1988) Sea-breeze convergence line in Majorca: a satellite observation. Weather. https://doi.org/10.1002/j.1477-8696.1988.tb03941.x

Ramon J, Lledó L, Torralba V et al (2019) What global reanalysis best represents near-surface winds? Q J R Meteorol Soc. https://doi.org/10.1002/qj.3616

Redaño A, Cruz J, Lorente J (1991) Main features of the sea-breeze in Barcelona. Meteorol Atmos Phys. https://doi.org/10.1007/BF01027342

Robinson FJ, Patterson MD, Sherwood SC (2013) A numerical modeling study of the propagation of idealized sea-breeze density currents. J Atmos Sci. https://doi.org/10.1175/JAS-D-12-0113.1

Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett. https://doi.org/10.1029/2007GL031166

Rojas M, Li LZ, Kanakidou M et al (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn. https://doi.org/10.1007/s00382-013-1823-8

Salvador R, Millán M (2003) Análisis histórico de las brisas en Castellón. Tethys 2:37–51

Seager R, Osborn TJ, Kushnir Y et al (2019) Climate variability and change of mediterranean-type climates. J Clim. https://doi.org/10.1175/JCLI-D-18-0472.1

Shen L, Zhao C (2020) Dominance of shortwave radiative heating in the Sea-Land Breeze amplitude and its impacts on atmospheric visibility in Tokyo, Japan. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031541

Shen L, Zhao C, Ma Z et al (2019) Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.05.007

Shen L, Zhao C, Yang X (2021a) Insight into the seasonal variations of the Sea-Land Breeze in Los Angeles with respect to the effects of solar radiation and climate type. J Geophys Res Atmos. https://doi.org/10.1029/2020JD033197

Shen L, Zhao C, Yang X (2021b) Climate-driven characteristics of Sea-Land Breezes over the globe. Geophys Res Lett. https://doi.org/10.1029/2020GL092308

Shen L, Zhao C, Yang X (2022) A new perspective on surface wind speed variation with respect to the contribution of sea-land breezes. Atmos Res. https://doi.org/10.1016/J.ATMOSRES.2022.106226

Simpson JE (1996) Sea breeze and local winds. Cambridge University Press. https://doi.org/10.2277/0521452112

Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea-breeze fronts. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49710343504

Steele CJ, Dorling SR, Von Glasow R, Bacon J (2015) Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2484

Sydeman WJ, García-Reyes M, Schoeman DS et al (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science (80–). https://doi.org/10.1126/science.1251635

Troccoli A, Muller K, Coppin P et al (2012) Long-term wind speed trends over Australia. J Clim. https://doi.org/10.1175/2011JCLI4198.1

Tuel A, Eltahir EAB (2020) Why is the Mediterranean a climate change hot spot? J Clim. https://doi.org/10.1175/JCLI-D-19-0910.1

Vahmani P, Ban-Weiss G (2016) Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys Res Lett. https://doi.org/10.1002/2016GL069658

Vahmani P, Sun F, Hall A, Ban-Weiss G (2016) Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/12/124027

Vautard R, Cattiaux J, Yiou P et al (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. https://doi.org/10.1038/ngeo979

Wu J, Zha J, Zhao D, Yang Q (2018) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn. https://doi.org/10.1007/s00382-017-3997-y

Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science (80–). https://doi.org/10.1126/science.aav9527

Zappa G, Hawcroft MK, Shaffrey L et al (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn. https://doi.org/10.1007/s00382-014-2426-8

Zecchetto S, De Biasio F (2007) Sea surface winds over the Mediterranean basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2498.1

Zeng Z, Ziegler AD, Searchinger T et al (2019) A reversal in global terrestrial stilling and its implications for wind energy production. Nat Clim Chang. https://doi.org/10.1038/s41558-019-0622-6

Zha J, Shen C, Li Z et al (2021) Projected changes in global terrestrial near-surface wind speed in 15–40 °C global warming levels. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac2fdd

Zhang X, Lu C, Guan Z (2012) Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ Res Lett. https://doi.org/10.1088/1748-9326/7/4/044044

Zhang G, Azorin-Molina C, Chen D et al (2020) Variability of daily maximum wind speed across China, 1975–2016: an examination of likely causes. J Clim. https://doi.org/10.1175/JCLI-D-19-0603.1

Zhang N, Wang Y (2021) Mechanisms for the isolated convections triggered by the sea breeze front and the urban heat Island. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-021-00800-6

Zhong S, Takle ES (1993) The effects of large-scale winds on the sea-land-breeze circulations in an area of complex coastal heating. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c1181:teolsw%3e2.0.co;2

Zhu M, Atkinson BW (2004) Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf. Int J Climatol. https://doi.org/10.1002/joc.1045

Zhu L, Meng Z, Zhang F, Markowski PM (2017) The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos Chem Phys. https://doi.org/10.5194/acp-17-13213-2017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem