- -

Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bedoya-Valestt, Shalenys es_ES
dc.contributor.author Azorin-Molina, Cesar es_ES
dc.contributor.author Gimeno, Luis es_ES
dc.contributor.author Guijarro, Jose A. es_ES
dc.contributor.author Sánchez Morcillo, Víctor José es_ES
dc.contributor.author Aguilar, Enric es_ES
dc.contributor.author Brunet, Manola es_ES
dc.date.accessioned 2023-03-07T19:01:03Z
dc.date.available 2023-03-07T19:01:03Z
dc.date.issued 2022-09-04 es_ES
dc.identifier.issn 0930-7575 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192411
dc.description.abstract [EN] Most studies on wind variability have deepened into the stilling vs. reversal phenomena at global to regional scales, while the long-term changes in local-scale winds such as sea-breezes (SB) represent a gap of knowledge in climate research. The state-of-the-art of the wind variability studies suggests a hypothetical reinforcement of SB at coastal stations. We frst developed a robust automated method for the identifcation of SB days. Then, by using homogenized wind observations from 16 stations across Eastern Spain, we identifed 9,349 episodes for analyzing the multidecadal variability and trends in SB speeds, gusts and occurrence for 1961¿2019. The major fnding is the opposite trends and decoupled variability of SB speeds and gusts: the SB speeds declined signifcantly in all seasons (except for winter), and the SB gusts strengthened at the annual scale and in autumn¿winter, being most signifcant in autumn. Our results also show that the SB occurrence has increased across most of Eastern Spain, although presenting contrasting seasonal trends: positive in winter and negative in summer. We found that more frequent anticyclonic conditions, NAOI+and MOI+are positively linked to the increased winter occurrence; however, the causes behind the opposite trends in SB speeds and gusts remain unclear. The SB changes are complex to explain, involving both large-scale circulation and physical-local factors that challenge the understanding of the opposite trends. Further investigation is needed to assess whether these trends are a widespread phenomenon, while climate models could simulate the drivers behind these decoupled SB changes in a warmer climate. es_ES
dc.description.sponsorship We thank AEMET for the observed wind speed data. This research was funded by the following projects: IBER-STILLING (RTI2018-095749-A-I00, MCIU/AEI/FEDER,UE); VENTS (GVA-AICO/2021/023) and the CSIC Interdisciplinary Thematic Platform (PTI) Clima (PTI-CLIMA). C.A.M was granted by Ramon y Cajal fellowship (RYC-2017-22830), and supported by a 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. This study is also supported by Unidad Asociada CSIC-Universidad de Vigo: Grupo de Fisica de la Atmosfera y del Océano. The authors wish to acknowledge the anonymous reviewers for their detailed and helpful comments to the original manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Climate Dynamics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sea breeze speeds and gusts es_ES
dc.subject Occurrence es_ES
dc.subject Changes es_ES
dc.subject Atmospheric circulation es_ES
dc.subject Eastern Spain es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00382-022-06473-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095749-A-I00/ES/EVALUACION Y ATRIBUCION DE LA VARIABILIDAD DE LA VELOCIDAD MEDIA Y LAS RACHAS MAXIMAS DE VIENTO: CAUSAS DEL FENOMENO STILLING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2017-22830//Ramon y Cajal fellowship/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Bedoya-Valestt, S.; Azorin-Molina, C.; Gimeno, L.; Guijarro, JA.; Sánchez Morcillo, VJ.; Aguilar, E.; Brunet, M. (2022). Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019. Climate Dynamics. 1-23. https://doi.org/10.1007/s00382-022-06473-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00382-022-06473-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\470888 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.contributor.funder Universidade de Vigo es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol. https://doi.org/10.1002/joc.3370060607 es_ES
dc.description.references Alomar G, Grimalt M (2008) Un modelo de simultaneidad de las brisas marinas en Mallorca. In: Sigró J, Brunet M, i Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología (AEC), Ser. A es_ES
dc.description.references Angulo-Martínez M, Beguería S (2012) Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.04.063 es_ES
dc.description.references Arrillaga JA, Jiménez P, Vilà-Guerau de Arellano J et al (2020) Analyzing the synoptic-, meso- and local- scale involved in Sea Breeze formation and frontal characteristics. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031302 es_ES
dc.description.references Arritt RW (1993) Effects of the large-scale flow on characteristic features of the sea breeze. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c0116:EOTLSF%3e2.0.CO;2 es_ES
dc.description.references Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1997)125%3c2112:IOTSSF%3e2.0.CO;2 es_ES
dc.description.references Azorin-Molina C, Chen D (2009) A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor Appl Climatol. https://doi.org/10.1007/s00704-008-0028-2 es_ES
dc.description.references Azorin-Molina C, Lopez-Bustins JA (2008) An automated sea breeze selection technique based on regional sea-level pressure difference: WeMOi. Int J Climatol. https://doi.org/10.1002/joc.1663 es_ES
dc.description.references Azorin-Molina C, Connell BH, Baena-Calatrava R (2009) Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J Appl Meteorol Climatol. https://doi.org/10.1175/2009JAMC2141.1 es_ES
dc.description.references Azorin-Molina C, Chen D, Tijm S, Baldi M (2011a) A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). Int J Climatol. https://doi.org/10.1002/joc.2064 es_ES
dc.description.references Azorin-Molina C, Tijm S, Chen D (2011b) Development of selection algorithms and databases for sea breeze studies. Theor Appl Climatol. https://doi.org/10.1007/s00704-011-0454-4 es_ES
dc.description.references Azorin-Molina C, Vicente-Serrano SM, Mcvicar TR et al (2014a) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Clim. https://doi.org/10.1175/JCLI-D-13-00652.1 es_ES
dc.description.references Azorin-Molina C, Tijm S, Ebert EE et al (2014b) Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts. Atmos Res. https://doi.org/10.1016/j.atmosres.2014.01.010 es_ES
dc.description.references Azorin-Molina C, Tijm S, Ebert EE et al (2015) High resolution HIRLAM simulations of the role of low-level sea-breeze convergence in initiating deep moist convection in the eastern Iberian Peninsula. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-014-9961-z es_ES
dc.description.references Azorin-Molina C, Guijarro JA, McVicar TR et al (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res. https://doi.org/10.1002/2015JD024485 es_ES
dc.description.references Azorin-Molina C, Rehman S, Guijarro JA et al (2018a) Recent trends in wind speed across Saudi Arabia, 1978–2013: a break in the stilling. Int J Climatol. https://doi.org/10.1002/joc.5423 es_ES
dc.description.references Azorin-Molina C, Menendez M, McVicar TR et al (2018b) Wind speed variability over the Canary Islands, 1948–2014: focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim Dyn. https://doi.org/10.1007/s00382-017-3861-0 es_ES
dc.description.references Azorin-Molina C, Guijarro JA, McVicar TR et al (2019) An approach to homogenize daily peak wind gusts: an application to the Australian series. Int J Climatol. https://doi.org/10.1002/joc.5949 es_ES
dc.description.references Azorin-Molina C, McVicar TR, Guijarro JA et al (2021) A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941–2016. J Clim. https://doi.org/10.1175/JCLI-D-20-0590.1 es_ES
dc.description.references Azorin-Molina C, Martín-Vide J (2007) Methodological approach to the study of the daily persistence of the sea breeze in Alicante (Spain). Atmosfera es_ES
dc.description.references Bei N, Zhao L, Wu J et al (2018) Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): a case study. Environ Pollut. https://doi.org/10.1016/j.envpol.2017.11.066 es_ES
dc.description.references Berri GJ, Dezzutti M (2020) A sea-breeze case study in the La Plata River Region using local observations, satellite images, and model simulations. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00548-3 es_ES
dc.description.references Birch CE, Roberts MJ, Garcia-Carreras L et al (2015) Sea-breeze dynamics and convection initiation: the influence of convective parameterization in weather and climate model biases. J Clim. https://doi.org/10.1175/JCLI-D-14-00850.1 es_ES
dc.description.references Brunetti M, Maugeri M, Nanni T et al (2006) Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006674 es_ES
dc.description.references Cana L, Grisolía-Santos D, Hernández-Guerra A (2020) A numerical study of a Sea Breeze at Fuerteventura Island, Canary Islands, Spain. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00506-z es_ES
dc.description.references Cafaro C, Frame THA, Methven J et al (2019) The added value of convection-permitting ensemble forecasts of sea breeze compared to a Bayesian forecast driven by the global ensemble. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3531 es_ES
dc.description.references Chen D, Rodhe H, Emanuel K et al (2020) Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus Ser B Chem Phys Meteorol. https://doi.org/10.1080/16000889.2020.1794236 es_ES
dc.description.references Corell D, Estrela MJ, Valiente JA et al (2020) Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003–2012. Int J Climatol. https://doi.org/10.1002/joc.6398 es_ES
dc.description.references Coulibaly A, Omotosho BJ, Sylla MB et al (2019) Characteristics of land and sea breezes along the Guinea Coast of West Africa. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02882-0 es_ES
dc.description.references Cresswell-Clay N, Ummenhofer CC, Thatcher DL et al (2022) Twentieth-century Azores High expansion unprecedented in the past 1,200 years. Nat Geosci. https://doi.org/10.1038/s41561-022-00971-w es_ES
dc.description.references Crosman ET, Horel JD (2010) Sea and lake Breezes: a review of numerical studies. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-010-9517-9 es_ES
dc.description.references Curci G, Guijarro JA, Di Antonio L et al (2021) Building a local climate reference dataset: application to the Abruzzo region (Central Italy), 1930–2019. Int J Climatol. https://doi.org/10.1002/joc.7081 es_ES
dc.description.references Davis SR, Farrar JT, Weller RA et al (2019) The land-sea Breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031007 es_ES
dc.description.references Real ÁD, Sanchez-Lorenzo A, Lopez-Bustins JA et al (2021) Atmospheric circulation and mortality by unintentional drowning in Spain: from 1999 to 2018. Perspect Public Health. https://doi.org/10.1177/17579139211007181 es_ES
dc.description.references Deng K, Azorin-Molina C, Minola L et al (2021) Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J Clim. https://doi.org/10.1175/JCLI-D-20-0310.1 es_ES
dc.description.references Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0506042102 es_ES
dc.description.references Domínguez-Castro F, Vaquero JM, Rodrigo FS et al (2014) Early Spanish meteorological records (1780–1850). Int J Climatol. https://doi.org/10.1002/joc.3709 es_ES
dc.description.references Drobinski P, Bastin S, Arsouze T et al (2018) North-western Mediterranean sea-breeze circulation in a regional climate system model. Clim Dyn. https://doi.org/10.1007/s00382-017-3595-z es_ES
dc.description.references El-Geziry TM, Elbessa M, Tonbol KM (2021) Climatology of Sea-Land Breezes along the Southern Coast of the Levantine Basin. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02726-x es_ES
dc.description.references Fernández-González S, Del Río S, Castro A et al (2012) Connection between NAO, weather types and precipitation in León, Spain (1948–2008). Int J Climatol. https://doi.org/10.1002/joc.2431 es_ES
dc.description.references Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic oscillation: past, present, and future. J Clim. https://doi.org/10.1175/2008JCLI2459.1 es_ES
dc.description.references Furberg M, Steyn DG, Baldi M (2002) The climatology of sea breezes on Sardinia. Int J Climatol. https://doi.org/10.1002/joc.780 es_ES
dc.description.references Gallego D, Garcia-Herrera R, Calvo N, Ribera P (2007) A new meteorological record for Cádiz (Spain) 1806–1852: Implications for climatic reconstructions. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008517 es_ES
dc.description.references Gavit P, Baddour Y, Tholmer R (2009) Use of change-point analysis for process monitoring and control. BioPharm Int. es_ES
dc.description.references Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2007.09.005 es_ES
dc.description.references Grau A, Jiménez MA, Cuxart J (2021) Statistical characterization of the sea-breeze physical mechanisms through in-situ and satellite observations. Int J Climatol. https://doi.org/10.1002/joc.6606 es_ES
dc.description.references Guedje FK, Houeto AVV, Houngninou EB et al (2019) Climatology of coastal wind regimes in Benin. Meteorol Zeitschrift. https://doi.org/10.1127/metz/2019/0930 es_ES
dc.description.references Guijarro JA (2018) Homogenization of climatic series with Climatol. State Meteorol Agency (AEMET), Balear Islands Off Spain es_ES
dc.description.references Guion A, Turquety S, Polcher J et al (2021) Droughts and heatwaves in the Western Mediterranean: impact on vegetation and wildfires using the coupled WRF-ORCHIDEE regional model (RegIPSL). Clim Dyn. https://doi.org/10.1007/s00382-021-05938-y es_ES
dc.description.references Haarsma RJ, Selten F, Vd HB et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett. https://doi.org/10.1029/2008GL036617 es_ES
dc.description.references Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. https://doi.org/10.1016/S0022-1694(97)00125-X es_ES
dc.description.references Hwang H, Eun SH, Kim BG et al (2020) Occurrence characteristics of Sea Breeze in the Gangneung region for 2009–2018. Atmosphere (basel). https://doi.org/10.14191/ATMOS.2020.30.3.221 es_ES
dc.description.references Jenkinson AF, Collison BP (1977) An initial climatology of gales over the North Sea Synoptic Climatol. Branch Memo. 62, Met Office, Bracknell, p 18 es_ES
dc.description.references Jerez S, Montavez JP, Gomez-Navarro JJ et al (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016576 es_ES
dc.description.references Jiang Y, Luo Y, Zhao Z, Tao S (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol. https://doi.org/10.1007/s00704-009-0152-7 es_ES
dc.description.references Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol. https://doi.org/10.1002/(sici)1097-0088(19971115)17:13%3c1433::aid-joc203%3e3.0.co;2-p es_ES
dc.description.references Khan B, Abualnaja Y, Al-Subhi AM et al (2018) Climatology of sea breezes along the Red Sea coast of Saudi Arabia. Int J Climatol. https://doi.org/10.1002/joc.5523 es_ES
dc.description.references Kim JC, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn. https://doi.org/10.1007/s00382-015-2546-9 es_ES
dc.description.references Kottmeier C, Palacio-Sese P, Kalthoff N et al (2000) Sea breezes and coastal jets in southeastern Spain. Int J Climatol. https://doi.org/10.1002/1097-0088(20001130)20:14%3c1791::AID-JOC574%3e3.0.CO;2-I es_ES
dc.description.references Kusaka H, Kimura F, Hirakuchi H, Mizutori M (2000) The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J Meteorol Soc Jpn. https://doi.org/10.2151/jmsj1965.78.4_405 es_ES
dc.description.references Laird NF, Kristovich DAR, Liang XZ et al (2001) Lake Michigan Lake Breezes: climatology, local forcing, and Synoptic environment. J Appl Meteorol. https://doi.org/10.1175/1520-0450(2001)040%3c0409:LMLBCL%3e2.0.CO;2 es_ES
dc.description.references Lamb HH (1950) Types and spells of weather around the year in the British Isles : annual trends, seasonal structure of the year, singularities. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49707633005 es_ES
dc.description.references Laurila TK, Sinclair VA, Gregow H (2021) Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int J Climatol. https://doi.org/10.1002/joc.6957 es_ES
dc.description.references Lebassi-Habtezion B, Gonzlez J, Bornstein R (2011) Modeled large-scale warming impacts on summer California coastal-cooling trends. J Geophys Res Atmos. https://doi.org/10.1029/2011JD015759 es_ES
dc.description.references Liang Z, Wang D (2017) Sea breeze and precipitation over Hainan Island. Q J R Meteorol Soc 143(702):137–151 es_ES
dc.description.references Mahrer Y, Rytwo G (1991) Modelling and measuring evapotranspiration in a daily drip irrigated cotton field. Irrig Sci. https://doi.org/10.1007/BF00190704 es_ES
dc.description.references Marshall CH, Pielke RA, Steyaert LT, Willard DA (2004) The impact of anthropogenic land-cover change on the Florida Peninsula Sea Breezes and warm season sensible weather. Mon Weather Rev. https://doi.org/10.1175/1520-0493(2004)132%3c0028:TIOALC%3e2.0.CO;2 es_ES
dc.description.references Martinez-Artigas J, Lemus-Canovas M, Lopez-Bustins JA (2021) Precipitation in peninsular Spain: influence of teleconnection indices and spatial regionalisation. Int J Climatol. https://doi.org/10.1002/joc.6770 es_ES
dc.description.references Martin-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol. https://doi.org/10.1002/joc.1388 es_ES
dc.description.references Masselink G, Pattiaratchi CB (2001) Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J Coast Res es_ES
dc.description.references McVicar TR, Roderick ML (2010) Atmospheric science: Winds of change. Nat Geosci. https://doi.org/10.1038/ngeo1002 es_ES
dc.description.references Miao JF, Kroon LJM, Vilà-Guerau de Arellano J, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-002-0579-1 es_ES
dc.description.references Millán MM (2014) Extreme hydrometeorological events and climate change predictions in Europe. J Hydrol. https://doi.org/10.1016/j.jhydrol.2013.12.041 es_ES
dc.description.references Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Clim. https://doi.org/10.1175/JCLI3426.1 es_ES
dc.description.references Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys. https://doi.org/10.1029/2003RG000124 es_ES
dc.description.references Minola L, Azorin-Molina C, Chen D (2016) Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J Clim. https://doi.org/10.1175/JCLI-D-15-0636.1 es_ES
dc.description.references Minola L, Zhang F, Azorin-Molina C et al (2020) Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim Dyn. https://doi.org/10.1007/s00382-020-05302-6 es_ES
dc.description.references Minola L, Reese H, Lai HW et al (2022) Wind stilling-reversal across Sweden: the impact of land-use and large-scale atmospheric circulation changes. Int J Climatol. https://doi.org/10.1002/joc.7289 es_ES
dc.description.references Misra V, Moeller L, Stefanova L et al (2011) The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze. J Geophys Res Atmos. https://doi.org/10.1029/2010JD015367 es_ES
dc.description.references Morán-Tejeda E, Bazo J, López-Moreno JI et al (2016) Climate trends and variability in Ecuador (1966–2011). Int J Climatol. https://doi.org/10.1002/joc.4597 es_ES
dc.description.references Olcina-Cantos J, Azorin-Molina C (2004) The meteorological importance of sea-breezes in the Levant region of Spain. Weather. https://doi.org/10.1256/wea.176.03 es_ES
dc.description.references Otero N, Sillmann J, Butler T (2018) Assessment of an extended version of the Jenkinson-Collison classification on CMIP5 models over Europe. Clim Dyn. https://doi.org/10.1007/s00382-017-3705-y es_ES
dc.description.references Palutikof J (2003) Analysis of mediterranean climate data: measured and modelled. In: Bolle HJ (eds) Mediterranean climate. Regional climate studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55657-9_6 es_ES
dc.description.references Papanastasiou DK, Melas D (2009) Climatology and impact on air quality of sea breeze in an urban coastal environment. Int J Climatol. https://doi.org/10.1002/joc.1707 es_ES
dc.description.references Papanastasiou DK, Melas D, Bartzanas T, Kittas C (2010) Temperature, comfort and pollution levels during heat waves and the role of sea breeze. Int J Biometeorol. https://doi.org/10.1007/s00484-009-0281-9 es_ES
dc.description.references Pastor F, Valiente JA, Estrela MJ (2015) Sea surface temperature and torrential rains in the Valencia region: Modelling the role of recharge areas. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-15-1677-2015 es_ES
dc.description.references Pausas JG, Millán MM (2019) Greening and browning in a climate change hotspot: the Mediterranean Basin. Bioscience. https://doi.org/10.1093/biosci/biy157 es_ES
dc.description.references Pazandeh-Masouleh Z, Walker DJ, Crowther JMC (2019) A long-term study of sea-breeze characteristics: a case study of the coastal city of Adelaide. J Appl Meteorol Climatol. https://doi.org/10.1175/JAMC-D-17-0251.1 es_ES
dc.description.references Perez GMP, Silva Dias MAF (2017) Long-term study of the occurrence and time of passage of sea breeze in São Paulo, 1960–2009. Int J Climatol. https://doi.org/10.1002/joc.5077 es_ES
dc.description.references Qian T, Epifanio CC, Zhang F (2012) Topographic effects on the tropical land and sea breeze. J Atmos Sci. https://doi.org/10.1175/JAS-D-11-011.1 es_ES
dc.description.references Ramis C, Alonso S (1988) Sea-breeze convergence line in Majorca: a satellite observation. Weather. https://doi.org/10.1002/j.1477-8696.1988.tb03941.x es_ES
dc.description.references Ramon J, Lledó L, Torralba V et al (2019) What global reanalysis best represents near-surface winds? Q J R Meteorol Soc. https://doi.org/10.1002/qj.3616 es_ES
dc.description.references Redaño A, Cruz J, Lorente J (1991) Main features of the sea-breeze in Barcelona. Meteorol Atmos Phys. https://doi.org/10.1007/BF01027342 es_ES
dc.description.references Robinson FJ, Patterson MD, Sherwood SC (2013) A numerical modeling study of the propagation of idealized sea-breeze density currents. J Atmos Sci. https://doi.org/10.1175/JAS-D-12-0113.1 es_ES
dc.description.references Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett. https://doi.org/10.1029/2007GL031166 es_ES
dc.description.references Rojas M, Li LZ, Kanakidou M et al (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn. https://doi.org/10.1007/s00382-013-1823-8 es_ES
dc.description.references Salvador R, Millán M (2003) Análisis histórico de las brisas en Castellón. Tethys 2:37–51 es_ES
dc.description.references Seager R, Osborn TJ, Kushnir Y et al (2019) Climate variability and change of mediterranean-type climates. J Clim. https://doi.org/10.1175/JCLI-D-18-0472.1 es_ES
dc.description.references Shen L, Zhao C (2020) Dominance of shortwave radiative heating in the Sea-Land Breeze amplitude and its impacts on atmospheric visibility in Tokyo, Japan. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031541 es_ES
dc.description.references Shen L, Zhao C, Ma Z et al (2019) Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.05.007 es_ES
dc.description.references Shen L, Zhao C, Yang X (2021a) Insight into the seasonal variations of the Sea-Land Breeze in Los Angeles with respect to the effects of solar radiation and climate type. J Geophys Res Atmos. https://doi.org/10.1029/2020JD033197 es_ES
dc.description.references Shen L, Zhao C, Yang X (2021b) Climate-driven characteristics of Sea-Land Breezes over the globe. Geophys Res Lett. https://doi.org/10.1029/2020GL092308 es_ES
dc.description.references Shen L, Zhao C, Yang X (2022) A new perspective on surface wind speed variation with respect to the contribution of sea-land breezes. Atmos Res. https://doi.org/10.1016/J.ATMOSRES.2022.106226 es_ES
dc.description.references Simpson JE (1996) Sea breeze and local winds. Cambridge University Press. https://doi.org/10.2277/0521452112 es_ES
dc.description.references Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea-breeze fronts. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49710343504 es_ES
dc.description.references Steele CJ, Dorling SR, Von Glasow R, Bacon J (2015) Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2484 es_ES
dc.description.references Sydeman WJ, García-Reyes M, Schoeman DS et al (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science (80–). https://doi.org/10.1126/science.1251635 es_ES
dc.description.references Troccoli A, Muller K, Coppin P et al (2012) Long-term wind speed trends over Australia. J Clim. https://doi.org/10.1175/2011JCLI4198.1 es_ES
dc.description.references Tuel A, Eltahir EAB (2020) Why is the Mediterranean a climate change hot spot? J Clim. https://doi.org/10.1175/JCLI-D-19-0910.1 es_ES
dc.description.references Vahmani P, Ban-Weiss G (2016) Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys Res Lett. https://doi.org/10.1002/2016GL069658 es_ES
dc.description.references Vahmani P, Sun F, Hall A, Ban-Weiss G (2016) Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/12/124027 es_ES
dc.description.references Vautard R, Cattiaux J, Yiou P et al (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. https://doi.org/10.1038/ngeo979 es_ES
dc.description.references Wu J, Zha J, Zhao D, Yang Q (2018) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn. https://doi.org/10.1007/s00382-017-3997-y es_ES
dc.description.references Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science (80–). https://doi.org/10.1126/science.aav9527 es_ES
dc.description.references Zappa G, Hawcroft MK, Shaffrey L et al (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn. https://doi.org/10.1007/s00382-014-2426-8 es_ES
dc.description.references Zecchetto S, De Biasio F (2007) Sea surface winds over the Mediterranean basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2498.1 es_ES
dc.description.references Zeng Z, Ziegler AD, Searchinger T et al (2019) A reversal in global terrestrial stilling and its implications for wind energy production. Nat Clim Chang. https://doi.org/10.1038/s41558-019-0622-6 es_ES
dc.description.references Zha J, Shen C, Li Z et al (2021) Projected changes in global terrestrial near-surface wind speed in 15–40 °C global warming levels. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac2fdd es_ES
dc.description.references Zhang X, Lu C, Guan Z (2012) Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ Res Lett. https://doi.org/10.1088/1748-9326/7/4/044044 es_ES
dc.description.references Zhang G, Azorin-Molina C, Chen D et al (2020) Variability of daily maximum wind speed across China, 1975–2016: an examination of likely causes. J Clim. https://doi.org/10.1175/JCLI-D-19-0603.1 es_ES
dc.description.references Zhang N, Wang Y (2021) Mechanisms for the isolated convections triggered by the sea breeze front and the urban heat Island. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-021-00800-6 es_ES
dc.description.references Zhong S, Takle ES (1993) The effects of large-scale winds on the sea-land-breeze circulations in an area of complex coastal heating. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c1181:teolsw%3e2.0.co;2 es_ES
dc.description.references Zhu M, Atkinson BW (2004) Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf. Int J Climatol. https://doi.org/10.1002/joc.1045 es_ES
dc.description.references Zhu L, Meng Z, Zhang F, Markowski PM (2017) The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos Chem Phys. https://doi.org/10.5194/acp-17-13213-2017 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem