Mostrar el registro sencillo del ítem
dc.contributor.author | Bedoya-Valestt, Shalenys | es_ES |
dc.contributor.author | Azorin-Molina, Cesar | es_ES |
dc.contributor.author | Gimeno, Luis | es_ES |
dc.contributor.author | Guijarro, Jose A. | es_ES |
dc.contributor.author | Sánchez Morcillo, Víctor José | es_ES |
dc.contributor.author | Aguilar, Enric | es_ES |
dc.contributor.author | Brunet, Manola | es_ES |
dc.date.accessioned | 2023-03-07T19:01:03Z | |
dc.date.available | 2023-03-07T19:01:03Z | |
dc.date.issued | 2022-09-04 | es_ES |
dc.identifier.issn | 0930-7575 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192411 | |
dc.description.abstract | [EN] Most studies on wind variability have deepened into the stilling vs. reversal phenomena at global to regional scales, while the long-term changes in local-scale winds such as sea-breezes (SB) represent a gap of knowledge in climate research. The state-of-the-art of the wind variability studies suggests a hypothetical reinforcement of SB at coastal stations. We frst developed a robust automated method for the identifcation of SB days. Then, by using homogenized wind observations from 16 stations across Eastern Spain, we identifed 9,349 episodes for analyzing the multidecadal variability and trends in SB speeds, gusts and occurrence for 1961¿2019. The major fnding is the opposite trends and decoupled variability of SB speeds and gusts: the SB speeds declined signifcantly in all seasons (except for winter), and the SB gusts strengthened at the annual scale and in autumn¿winter, being most signifcant in autumn. Our results also show that the SB occurrence has increased across most of Eastern Spain, although presenting contrasting seasonal trends: positive in winter and negative in summer. We found that more frequent anticyclonic conditions, NAOI+and MOI+are positively linked to the increased winter occurrence; however, the causes behind the opposite trends in SB speeds and gusts remain unclear. The SB changes are complex to explain, involving both large-scale circulation and physical-local factors that challenge the understanding of the opposite trends. Further investigation is needed to assess whether these trends are a widespread phenomenon, while climate models could simulate the drivers behind these decoupled SB changes in a warmer climate. | es_ES |
dc.description.sponsorship | We thank AEMET for the observed wind speed data. This research was funded by the following projects: IBER-STILLING (RTI2018-095749-A-I00, MCIU/AEI/FEDER,UE); VENTS (GVA-AICO/2021/023) and the CSIC Interdisciplinary Thematic Platform (PTI) Clima (PTI-CLIMA). C.A.M was granted by Ramon y Cajal fellowship (RYC-2017-22830), and supported by a 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. This study is also supported by Unidad Asociada CSIC-Universidad de Vigo: Grupo de Fisica de la Atmosfera y del Océano. The authors wish to acknowledge the anonymous reviewers for their detailed and helpful comments to the original manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Climate Dynamics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sea breeze speeds and gusts | es_ES |
dc.subject | Occurrence | es_ES |
dc.subject | Changes | es_ES |
dc.subject | Atmospheric circulation | es_ES |
dc.subject | Eastern Spain | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00382-022-06473-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095749-A-I00/ES/EVALUACION Y ATRIBUCION DE LA VARIABILIDAD DE LA VELOCIDAD MEDIA Y LAS RACHAS MAXIMAS DE VIENTO: CAUSAS DEL FENOMENO STILLING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F023/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2017-22830//Ramon y Cajal fellowship/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Bedoya-Valestt, S.; Azorin-Molina, C.; Gimeno, L.; Guijarro, JA.; Sánchez Morcillo, VJ.; Aguilar, E.; Brunet, M. (2022). Opposite trends of sea-breeze speeds and gusts in Eastern Spain, 1961-2019. Climate Dynamics. 1-23. https://doi.org/10.1007/s00382-022-06473-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00382-022-06473-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\470888 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.contributor.funder | Universidade de Vigo | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol. https://doi.org/10.1002/joc.3370060607 | es_ES |
dc.description.references | Alomar G, Grimalt M (2008) Un modelo de simultaneidad de las brisas marinas en Mallorca. In: Sigró J, Brunet M, i Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología (AEC), Ser. A | es_ES |
dc.description.references | Angulo-Martínez M, Beguería S (2012) Do atmospheric teleconnection patterns influence rainfall erosivity? A study of NAO, MO and WeMO in NE Spain, 1955–2006. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.04.063 | es_ES |
dc.description.references | Arrillaga JA, Jiménez P, Vilà-Guerau de Arellano J et al (2020) Analyzing the synoptic-, meso- and local- scale involved in Sea Breeze formation and frontal characteristics. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031302 | es_ES |
dc.description.references | Arritt RW (1993) Effects of the large-scale flow on characteristic features of the sea breeze. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c0116:EOTLSF%3e2.0.CO;2 | es_ES |
dc.description.references | Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1997)125%3c2112:IOTSSF%3e2.0.CO;2 | es_ES |
dc.description.references | Azorin-Molina C, Chen D (2009) A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor Appl Climatol. https://doi.org/10.1007/s00704-008-0028-2 | es_ES |
dc.description.references | Azorin-Molina C, Lopez-Bustins JA (2008) An automated sea breeze selection technique based on regional sea-level pressure difference: WeMOi. Int J Climatol. https://doi.org/10.1002/joc.1663 | es_ES |
dc.description.references | Azorin-Molina C, Connell BH, Baena-Calatrava R (2009) Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J Appl Meteorol Climatol. https://doi.org/10.1175/2009JAMC2141.1 | es_ES |
dc.description.references | Azorin-Molina C, Chen D, Tijm S, Baldi M (2011a) A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). Int J Climatol. https://doi.org/10.1002/joc.2064 | es_ES |
dc.description.references | Azorin-Molina C, Tijm S, Chen D (2011b) Development of selection algorithms and databases for sea breeze studies. Theor Appl Climatol. https://doi.org/10.1007/s00704-011-0454-4 | es_ES |
dc.description.references | Azorin-Molina C, Vicente-Serrano SM, Mcvicar TR et al (2014a) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Clim. https://doi.org/10.1175/JCLI-D-13-00652.1 | es_ES |
dc.description.references | Azorin-Molina C, Tijm S, Ebert EE et al (2014b) Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts. Atmos Res. https://doi.org/10.1016/j.atmosres.2014.01.010 | es_ES |
dc.description.references | Azorin-Molina C, Tijm S, Ebert EE et al (2015) High resolution HIRLAM simulations of the role of low-level sea-breeze convergence in initiating deep moist convection in the eastern Iberian Peninsula. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-014-9961-z | es_ES |
dc.description.references | Azorin-Molina C, Guijarro JA, McVicar TR et al (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res. https://doi.org/10.1002/2015JD024485 | es_ES |
dc.description.references | Azorin-Molina C, Rehman S, Guijarro JA et al (2018a) Recent trends in wind speed across Saudi Arabia, 1978–2013: a break in the stilling. Int J Climatol. https://doi.org/10.1002/joc.5423 | es_ES |
dc.description.references | Azorin-Molina C, Menendez M, McVicar TR et al (2018b) Wind speed variability over the Canary Islands, 1948–2014: focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim Dyn. https://doi.org/10.1007/s00382-017-3861-0 | es_ES |
dc.description.references | Azorin-Molina C, Guijarro JA, McVicar TR et al (2019) An approach to homogenize daily peak wind gusts: an application to the Australian series. Int J Climatol. https://doi.org/10.1002/joc.5949 | es_ES |
dc.description.references | Azorin-Molina C, McVicar TR, Guijarro JA et al (2021) A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941–2016. J Clim. https://doi.org/10.1175/JCLI-D-20-0590.1 | es_ES |
dc.description.references | Azorin-Molina C, Martín-Vide J (2007) Methodological approach to the study of the daily persistence of the sea breeze in Alicante (Spain). Atmosfera | es_ES |
dc.description.references | Bei N, Zhao L, Wu J et al (2018) Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): a case study. Environ Pollut. https://doi.org/10.1016/j.envpol.2017.11.066 | es_ES |
dc.description.references | Berri GJ, Dezzutti M (2020) A sea-breeze case study in the La Plata River Region using local observations, satellite images, and model simulations. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00548-3 | es_ES |
dc.description.references | Birch CE, Roberts MJ, Garcia-Carreras L et al (2015) Sea-breeze dynamics and convection initiation: the influence of convective parameterization in weather and climate model biases. J Clim. https://doi.org/10.1175/JCLI-D-14-00850.1 | es_ES |
dc.description.references | Brunetti M, Maugeri M, Nanni T et al (2006) Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006674 | es_ES |
dc.description.references | Cana L, Grisolía-Santos D, Hernández-Guerra A (2020) A numerical study of a Sea Breeze at Fuerteventura Island, Canary Islands, Spain. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00506-z | es_ES |
dc.description.references | Cafaro C, Frame THA, Methven J et al (2019) The added value of convection-permitting ensemble forecasts of sea breeze compared to a Bayesian forecast driven by the global ensemble. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3531 | es_ES |
dc.description.references | Chen D, Rodhe H, Emanuel K et al (2020) Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus Ser B Chem Phys Meteorol. https://doi.org/10.1080/16000889.2020.1794236 | es_ES |
dc.description.references | Corell D, Estrela MJ, Valiente JA et al (2020) Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003–2012. Int J Climatol. https://doi.org/10.1002/joc.6398 | es_ES |
dc.description.references | Coulibaly A, Omotosho BJ, Sylla MB et al (2019) Characteristics of land and sea breezes along the Guinea Coast of West Africa. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02882-0 | es_ES |
dc.description.references | Cresswell-Clay N, Ummenhofer CC, Thatcher DL et al (2022) Twentieth-century Azores High expansion unprecedented in the past 1,200 years. Nat Geosci. https://doi.org/10.1038/s41561-022-00971-w | es_ES |
dc.description.references | Crosman ET, Horel JD (2010) Sea and lake Breezes: a review of numerical studies. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-010-9517-9 | es_ES |
dc.description.references | Curci G, Guijarro JA, Di Antonio L et al (2021) Building a local climate reference dataset: application to the Abruzzo region (Central Italy), 1930–2019. Int J Climatol. https://doi.org/10.1002/joc.7081 | es_ES |
dc.description.references | Davis SR, Farrar JT, Weller RA et al (2019) The land-sea Breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031007 | es_ES |
dc.description.references | Real ÁD, Sanchez-Lorenzo A, Lopez-Bustins JA et al (2021) Atmospheric circulation and mortality by unintentional drowning in Spain: from 1999 to 2018. Perspect Public Health. https://doi.org/10.1177/17579139211007181 | es_ES |
dc.description.references | Deng K, Azorin-Molina C, Minola L et al (2021) Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J Clim. https://doi.org/10.1175/JCLI-D-20-0310.1 | es_ES |
dc.description.references | Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0506042102 | es_ES |
dc.description.references | Domínguez-Castro F, Vaquero JM, Rodrigo FS et al (2014) Early Spanish meteorological records (1780–1850). Int J Climatol. https://doi.org/10.1002/joc.3709 | es_ES |
dc.description.references | Drobinski P, Bastin S, Arsouze T et al (2018) North-western Mediterranean sea-breeze circulation in a regional climate system model. Clim Dyn. https://doi.org/10.1007/s00382-017-3595-z | es_ES |
dc.description.references | El-Geziry TM, Elbessa M, Tonbol KM (2021) Climatology of Sea-Land Breezes along the Southern Coast of the Levantine Basin. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02726-x | es_ES |
dc.description.references | Fernández-González S, Del Río S, Castro A et al (2012) Connection between NAO, weather types and precipitation in León, Spain (1948–2008). Int J Climatol. https://doi.org/10.1002/joc.2431 | es_ES |
dc.description.references | Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic oscillation: past, present, and future. J Clim. https://doi.org/10.1175/2008JCLI2459.1 | es_ES |
dc.description.references | Furberg M, Steyn DG, Baldi M (2002) The climatology of sea breezes on Sardinia. Int J Climatol. https://doi.org/10.1002/joc.780 | es_ES |
dc.description.references | Gallego D, Garcia-Herrera R, Calvo N, Ribera P (2007) A new meteorological record for Cádiz (Spain) 1806–1852: Implications for climatic reconstructions. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008517 | es_ES |
dc.description.references | Gavit P, Baddour Y, Tholmer R (2009) Use of change-point analysis for process monitoring and control. BioPharm Int. | es_ES |
dc.description.references | Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2007.09.005 | es_ES |
dc.description.references | Grau A, Jiménez MA, Cuxart J (2021) Statistical characterization of the sea-breeze physical mechanisms through in-situ and satellite observations. Int J Climatol. https://doi.org/10.1002/joc.6606 | es_ES |
dc.description.references | Guedje FK, Houeto AVV, Houngninou EB et al (2019) Climatology of coastal wind regimes in Benin. Meteorol Zeitschrift. https://doi.org/10.1127/metz/2019/0930 | es_ES |
dc.description.references | Guijarro JA (2018) Homogenization of climatic series with Climatol. State Meteorol Agency (AEMET), Balear Islands Off Spain | es_ES |
dc.description.references | Guion A, Turquety S, Polcher J et al (2021) Droughts and heatwaves in the Western Mediterranean: impact on vegetation and wildfires using the coupled WRF-ORCHIDEE regional model (RegIPSL). Clim Dyn. https://doi.org/10.1007/s00382-021-05938-y | es_ES |
dc.description.references | Haarsma RJ, Selten F, Vd HB et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett. https://doi.org/10.1029/2008GL036617 | es_ES |
dc.description.references | Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. https://doi.org/10.1016/S0022-1694(97)00125-X | es_ES |
dc.description.references | Hwang H, Eun SH, Kim BG et al (2020) Occurrence characteristics of Sea Breeze in the Gangneung region for 2009–2018. Atmosphere (basel). https://doi.org/10.14191/ATMOS.2020.30.3.221 | es_ES |
dc.description.references | Jenkinson AF, Collison BP (1977) An initial climatology of gales over the North Sea Synoptic Climatol. Branch Memo. 62, Met Office, Bracknell, p 18 | es_ES |
dc.description.references | Jerez S, Montavez JP, Gomez-Navarro JJ et al (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016576 | es_ES |
dc.description.references | Jiang Y, Luo Y, Zhao Z, Tao S (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol. https://doi.org/10.1007/s00704-009-0152-7 | es_ES |
dc.description.references | Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol. https://doi.org/10.1002/(sici)1097-0088(19971115)17:13%3c1433::aid-joc203%3e3.0.co;2-p | es_ES |
dc.description.references | Khan B, Abualnaja Y, Al-Subhi AM et al (2018) Climatology of sea breezes along the Red Sea coast of Saudi Arabia. Int J Climatol. https://doi.org/10.1002/joc.5523 | es_ES |
dc.description.references | Kim JC, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn. https://doi.org/10.1007/s00382-015-2546-9 | es_ES |
dc.description.references | Kottmeier C, Palacio-Sese P, Kalthoff N et al (2000) Sea breezes and coastal jets in southeastern Spain. Int J Climatol. https://doi.org/10.1002/1097-0088(20001130)20:14%3c1791::AID-JOC574%3e3.0.CO;2-I | es_ES |
dc.description.references | Kusaka H, Kimura F, Hirakuchi H, Mizutori M (2000) The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J Meteorol Soc Jpn. https://doi.org/10.2151/jmsj1965.78.4_405 | es_ES |
dc.description.references | Laird NF, Kristovich DAR, Liang XZ et al (2001) Lake Michigan Lake Breezes: climatology, local forcing, and Synoptic environment. J Appl Meteorol. https://doi.org/10.1175/1520-0450(2001)040%3c0409:LMLBCL%3e2.0.CO;2 | es_ES |
dc.description.references | Lamb HH (1950) Types and spells of weather around the year in the British Isles : annual trends, seasonal structure of the year, singularities. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49707633005 | es_ES |
dc.description.references | Laurila TK, Sinclair VA, Gregow H (2021) Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int J Climatol. https://doi.org/10.1002/joc.6957 | es_ES |
dc.description.references | Lebassi-Habtezion B, Gonzlez J, Bornstein R (2011) Modeled large-scale warming impacts on summer California coastal-cooling trends. J Geophys Res Atmos. https://doi.org/10.1029/2011JD015759 | es_ES |
dc.description.references | Liang Z, Wang D (2017) Sea breeze and precipitation over Hainan Island. Q J R Meteorol Soc 143(702):137–151 | es_ES |
dc.description.references | Mahrer Y, Rytwo G (1991) Modelling and measuring evapotranspiration in a daily drip irrigated cotton field. Irrig Sci. https://doi.org/10.1007/BF00190704 | es_ES |
dc.description.references | Marshall CH, Pielke RA, Steyaert LT, Willard DA (2004) The impact of anthropogenic land-cover change on the Florida Peninsula Sea Breezes and warm season sensible weather. Mon Weather Rev. https://doi.org/10.1175/1520-0493(2004)132%3c0028:TIOALC%3e2.0.CO;2 | es_ES |
dc.description.references | Martinez-Artigas J, Lemus-Canovas M, Lopez-Bustins JA (2021) Precipitation in peninsular Spain: influence of teleconnection indices and spatial regionalisation. Int J Climatol. https://doi.org/10.1002/joc.6770 | es_ES |
dc.description.references | Martin-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol. https://doi.org/10.1002/joc.1388 | es_ES |
dc.description.references | Masselink G, Pattiaratchi CB (2001) Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J Coast Res | es_ES |
dc.description.references | McVicar TR, Roderick ML (2010) Atmospheric science: Winds of change. Nat Geosci. https://doi.org/10.1038/ngeo1002 | es_ES |
dc.description.references | Miao JF, Kroon LJM, Vilà-Guerau de Arellano J, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-002-0579-1 | es_ES |
dc.description.references | Millán MM (2014) Extreme hydrometeorological events and climate change predictions in Europe. J Hydrol. https://doi.org/10.1016/j.jhydrol.2013.12.041 | es_ES |
dc.description.references | Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Clim. https://doi.org/10.1175/JCLI3426.1 | es_ES |
dc.description.references | Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys. https://doi.org/10.1029/2003RG000124 | es_ES |
dc.description.references | Minola L, Azorin-Molina C, Chen D (2016) Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J Clim. https://doi.org/10.1175/JCLI-D-15-0636.1 | es_ES |
dc.description.references | Minola L, Zhang F, Azorin-Molina C et al (2020) Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim Dyn. https://doi.org/10.1007/s00382-020-05302-6 | es_ES |
dc.description.references | Minola L, Reese H, Lai HW et al (2022) Wind stilling-reversal across Sweden: the impact of land-use and large-scale atmospheric circulation changes. Int J Climatol. https://doi.org/10.1002/joc.7289 | es_ES |
dc.description.references | Misra V, Moeller L, Stefanova L et al (2011) The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze. J Geophys Res Atmos. https://doi.org/10.1029/2010JD015367 | es_ES |
dc.description.references | Morán-Tejeda E, Bazo J, López-Moreno JI et al (2016) Climate trends and variability in Ecuador (1966–2011). Int J Climatol. https://doi.org/10.1002/joc.4597 | es_ES |
dc.description.references | Olcina-Cantos J, Azorin-Molina C (2004) The meteorological importance of sea-breezes in the Levant region of Spain. Weather. https://doi.org/10.1256/wea.176.03 | es_ES |
dc.description.references | Otero N, Sillmann J, Butler T (2018) Assessment of an extended version of the Jenkinson-Collison classification on CMIP5 models over Europe. Clim Dyn. https://doi.org/10.1007/s00382-017-3705-y | es_ES |
dc.description.references | Palutikof J (2003) Analysis of mediterranean climate data: measured and modelled. In: Bolle HJ (eds) Mediterranean climate. Regional climate studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55657-9_6 | es_ES |
dc.description.references | Papanastasiou DK, Melas D (2009) Climatology and impact on air quality of sea breeze in an urban coastal environment. Int J Climatol. https://doi.org/10.1002/joc.1707 | es_ES |
dc.description.references | Papanastasiou DK, Melas D, Bartzanas T, Kittas C (2010) Temperature, comfort and pollution levels during heat waves and the role of sea breeze. Int J Biometeorol. https://doi.org/10.1007/s00484-009-0281-9 | es_ES |
dc.description.references | Pastor F, Valiente JA, Estrela MJ (2015) Sea surface temperature and torrential rains in the Valencia region: Modelling the role of recharge areas. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-15-1677-2015 | es_ES |
dc.description.references | Pausas JG, Millán MM (2019) Greening and browning in a climate change hotspot: the Mediterranean Basin. Bioscience. https://doi.org/10.1093/biosci/biy157 | es_ES |
dc.description.references | Pazandeh-Masouleh Z, Walker DJ, Crowther JMC (2019) A long-term study of sea-breeze characteristics: a case study of the coastal city of Adelaide. J Appl Meteorol Climatol. https://doi.org/10.1175/JAMC-D-17-0251.1 | es_ES |
dc.description.references | Perez GMP, Silva Dias MAF (2017) Long-term study of the occurrence and time of passage of sea breeze in São Paulo, 1960–2009. Int J Climatol. https://doi.org/10.1002/joc.5077 | es_ES |
dc.description.references | Qian T, Epifanio CC, Zhang F (2012) Topographic effects on the tropical land and sea breeze. J Atmos Sci. https://doi.org/10.1175/JAS-D-11-011.1 | es_ES |
dc.description.references | Ramis C, Alonso S (1988) Sea-breeze convergence line in Majorca: a satellite observation. Weather. https://doi.org/10.1002/j.1477-8696.1988.tb03941.x | es_ES |
dc.description.references | Ramon J, Lledó L, Torralba V et al (2019) What global reanalysis best represents near-surface winds? Q J R Meteorol Soc. https://doi.org/10.1002/qj.3616 | es_ES |
dc.description.references | Redaño A, Cruz J, Lorente J (1991) Main features of the sea-breeze in Barcelona. Meteorol Atmos Phys. https://doi.org/10.1007/BF01027342 | es_ES |
dc.description.references | Robinson FJ, Patterson MD, Sherwood SC (2013) A numerical modeling study of the propagation of idealized sea-breeze density currents. J Atmos Sci. https://doi.org/10.1175/JAS-D-12-0113.1 | es_ES |
dc.description.references | Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett. https://doi.org/10.1029/2007GL031166 | es_ES |
dc.description.references | Rojas M, Li LZ, Kanakidou M et al (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn. https://doi.org/10.1007/s00382-013-1823-8 | es_ES |
dc.description.references | Salvador R, Millán M (2003) Análisis histórico de las brisas en Castellón. Tethys 2:37–51 | es_ES |
dc.description.references | Seager R, Osborn TJ, Kushnir Y et al (2019) Climate variability and change of mediterranean-type climates. J Clim. https://doi.org/10.1175/JCLI-D-18-0472.1 | es_ES |
dc.description.references | Shen L, Zhao C (2020) Dominance of shortwave radiative heating in the Sea-Land Breeze amplitude and its impacts on atmospheric visibility in Tokyo, Japan. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031541 | es_ES |
dc.description.references | Shen L, Zhao C, Ma Z et al (2019) Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.05.007 | es_ES |
dc.description.references | Shen L, Zhao C, Yang X (2021a) Insight into the seasonal variations of the Sea-Land Breeze in Los Angeles with respect to the effects of solar radiation and climate type. J Geophys Res Atmos. https://doi.org/10.1029/2020JD033197 | es_ES |
dc.description.references | Shen L, Zhao C, Yang X (2021b) Climate-driven characteristics of Sea-Land Breezes over the globe. Geophys Res Lett. https://doi.org/10.1029/2020GL092308 | es_ES |
dc.description.references | Shen L, Zhao C, Yang X (2022) A new perspective on surface wind speed variation with respect to the contribution of sea-land breezes. Atmos Res. https://doi.org/10.1016/J.ATMOSRES.2022.106226 | es_ES |
dc.description.references | Simpson JE (1996) Sea breeze and local winds. Cambridge University Press. https://doi.org/10.2277/0521452112 | es_ES |
dc.description.references | Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea-breeze fronts. Q J R Meteorol Soc. https://doi.org/10.1002/qj.49710343504 | es_ES |
dc.description.references | Steele CJ, Dorling SR, Von Glasow R, Bacon J (2015) Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2484 | es_ES |
dc.description.references | Sydeman WJ, García-Reyes M, Schoeman DS et al (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science (80–). https://doi.org/10.1126/science.1251635 | es_ES |
dc.description.references | Troccoli A, Muller K, Coppin P et al (2012) Long-term wind speed trends over Australia. J Clim. https://doi.org/10.1175/2011JCLI4198.1 | es_ES |
dc.description.references | Tuel A, Eltahir EAB (2020) Why is the Mediterranean a climate change hot spot? J Clim. https://doi.org/10.1175/JCLI-D-19-0910.1 | es_ES |
dc.description.references | Vahmani P, Ban-Weiss G (2016) Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys Res Lett. https://doi.org/10.1002/2016GL069658 | es_ES |
dc.description.references | Vahmani P, Sun F, Hall A, Ban-Weiss G (2016) Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/12/124027 | es_ES |
dc.description.references | Vautard R, Cattiaux J, Yiou P et al (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci. https://doi.org/10.1038/ngeo979 | es_ES |
dc.description.references | Wu J, Zha J, Zhao D, Yang Q (2018) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn. https://doi.org/10.1007/s00382-017-3997-y | es_ES |
dc.description.references | Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science (80–). https://doi.org/10.1126/science.aav9527 | es_ES |
dc.description.references | Zappa G, Hawcroft MK, Shaffrey L et al (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn. https://doi.org/10.1007/s00382-014-2426-8 | es_ES |
dc.description.references | Zecchetto S, De Biasio F (2007) Sea surface winds over the Mediterranean basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2498.1 | es_ES |
dc.description.references | Zeng Z, Ziegler AD, Searchinger T et al (2019) A reversal in global terrestrial stilling and its implications for wind energy production. Nat Clim Chang. https://doi.org/10.1038/s41558-019-0622-6 | es_ES |
dc.description.references | Zha J, Shen C, Li Z et al (2021) Projected changes in global terrestrial near-surface wind speed in 15–40 °C global warming levels. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac2fdd | es_ES |
dc.description.references | Zhang X, Lu C, Guan Z (2012) Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ Res Lett. https://doi.org/10.1088/1748-9326/7/4/044044 | es_ES |
dc.description.references | Zhang G, Azorin-Molina C, Chen D et al (2020) Variability of daily maximum wind speed across China, 1975–2016: an examination of likely causes. J Clim. https://doi.org/10.1175/JCLI-D-19-0603.1 | es_ES |
dc.description.references | Zhang N, Wang Y (2021) Mechanisms for the isolated convections triggered by the sea breeze front and the urban heat Island. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-021-00800-6 | es_ES |
dc.description.references | Zhong S, Takle ES (1993) The effects of large-scale winds on the sea-land-breeze circulations in an area of complex coastal heating. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1993)032%3c1181:teolsw%3e2.0.co;2 | es_ES |
dc.description.references | Zhu M, Atkinson BW (2004) Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf. Int J Climatol. https://doi.org/10.1002/joc.1045 | es_ES |
dc.description.references | Zhu L, Meng Z, Zhang F, Markowski PM (2017) The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos Chem Phys. https://doi.org/10.5194/acp-17-13213-2017 | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |