- -

A review of the use of machine learning techniques in eco-innovation research

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A review of the use of machine learning techniques in eco-innovation research

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Diez Martinez, Ines es_ES
dc.contributor.author Peiró Signés, Ángel es_ES
dc.date.accessioned 2023-03-08T09:37:36Z
dc.date.available 2023-03-08T09:37:36Z
dc.date.issued 2023-01-10
dc.identifier.isbn 9788413960289
dc.identifier.uri http://hdl.handle.net/10251/192435
dc.description.abstract [EN] Machine learning is a powerful tool used across research all over the world. Machine learning algorithms are a form of artificial intelligence that allows more accurate predictions of causal conditions of all kinds, being able to analyze complex data samples beyond what a human could do. Machine learning mimics human reasoning by creating a neural network, and this has proven to be a useful technique to solve complex problems. The thread of climate change is one of the most complex problems that humanity is currently facing. On one hand, we need the industries and the market to continue to function to guarantee covering the needs of the population, and its continued development. On the other hand, this development must guarantee the conservation of the planet and its habitability conditions, which are essential for the continued existence of a world to be left to future generations. Reducing the harmful effects that business-related activities have on the natural environment is key to guarantee a sustainable future, and this done, among other elements, through eco-innovation techniques. Therefore, both machine learning and eco-innovation are striving topics across researchers nowadays, but: Are these two topics linked to each other? Is machine learning used as a tool to support a better understanding of eco-innovation (i.e., environmental innovation)? This review aims to understand what is the role that machine learning has in the context of eco-innovation. Results show that machine learning is not a widely used technique in the field of eco-innovation research and that there is a wide spectrum of research in which machine learning could be used in the future alongside the increasing research linked to eco-innovation.  es_ES
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference Business Meets Technology 2022
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Machine learning es_ES
dc.subject Sustainability es_ES
dc.subject Innovation es_ES
dc.subject Eco-innovation es_ES
dc.subject Environmental innovation es_ES
dc.title A review of the use of machine learning techniques in eco-innovation research es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/BMT2022.2022.15550
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Diez Martinez, I.; Peiró Signés, Á. (2023). A review of the use of machine learning techniques in eco-innovation research. En 4th International Conference Business Meets Technology 2022. Editorial Universitat Politècnica de València. 244-254. https://doi.org/10.4995/BMT2022.2022.15550 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 4th International Conference. Business Meets Technology es_ES
dc.relation.conferencedate Julio 07-09, 2022 es_ES
dc.relation.conferenceplace Ansbach, Alemania es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/BMT/BMT2022/paper/view/15550 es_ES
dc.description.upvformatpinicio 244 es_ES
dc.description.upvformatpfin 254 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15550 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem