Mostrar el registro completo del ítem
López-Almazán, H.; Perez-Benito, FJ.; Larroza, A.; Perez-Cortes, J.; Pollán, M.; Perez-Gomez, B.; Salas-Trejo, D.... (2022). A Deep Learning Framework to classify Breast Density with Noisy Labels Regularization. Computer Methods and Programs in Biomedicine. 221:1-11. https://doi.org/10.1016/j.cmpb.2022.106885
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192600
Título: | A Deep Learning Framework to classify Breast Density with Noisy Labels Regularization | |
Autor: | López-Almazán, Héctor Pollán, Marina Perez-Gomez, Beatriz Salas-Trejo, Dolores Casals, María | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Background and Objective: Breast density assessed from digital mammograms is a biomarker for higher risk of developing breast cancer. Experienced radiologists assess breast density using the Breast Image and Data ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https:\\doi.org\10.1016/j.cmpb.2022.106885 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2021/1.[+]
|
|
Tipo: |
|