- -

A Deep Learning Framework to classify Breast Density with Noisy Labels Regularization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Learning Framework to classify Breast Density with Noisy Labels Regularization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Almazán, Héctor es_ES
dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Larroza, Andrés es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.contributor.author Pollán, Marina es_ES
dc.contributor.author Perez-Gomez, Beatriz es_ES
dc.contributor.author Salas-Trejo, Dolores es_ES
dc.contributor.author Casals, María es_ES
dc.contributor.author Llobet Azpitarte, Rafael es_ES
dc.date.accessioned 2023-03-24T19:01:18Z
dc.date.available 2023-03-24T19:01:18Z
dc.date.issued 2022-06-01 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192600
dc.description.abstract [EN] Background and Objective: Breast density assessed from digital mammograms is a biomarker for higher risk of developing breast cancer. Experienced radiologists assess breast density using the Breast Image and Data System (BI-RADS) categories. Supervised learning algorithms have been developed with this objective in mind, however, the performance of these algorithms depends on the quality of the ground truth information which is usually labeled by expert readers. These labels are noisy approximations of the ground truth, as there is often intra-and inter-reader variability among labels. Thus, it is crucial to provide a reliable method to obtain digital mammograms matching BI-RADS categories. This paper presents RegL (Labels Regularizer), a methodology that includes different image pre-processes to allow both a correct breast segmentation and the enhancement of image quality through an intensity adjustment, thus allowing the use of deep learning to classify the mammograms into BI-RADS categories. The Confusion Matrix (CM) CNN network used implements an architecture that models each radiologist's noisy label. The final methodology pipeline was determined after comparing the performance of image pre-processes combined with different DL architectures.Methods: A multi-center study composed of 1395 women whose mammograms were classified into the four BI-RADS categories by three experienced radiologists is presented. A total of 892 mammograms were used as the training corpus, 224 formed the validation corpus, and 279 the test corpus.Results: The combination of five networks implementing the RegL methodology achieved the best results among all the models in the test set. The ensemble model obtained an accuracy of (0.85) and a kappa index of 0.71. Conclusions: The proposed methodology has a similar performance to the experienced radiologists in the classification of digital mammograms into BI-RADS categories. This suggests that the pre-processing steps and modelling of each radiologist's label allows for a better estimation of the unknown ground truth labels. es_ES
dc.description.sponsorship This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2021/1. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Breast density es_ES
dc.subject Noisy labels es_ES
dc.subject Deep learning es_ES
dc.subject Dense tissue classification es_ES
dc.subject Mammography es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A Deep Learning Framework to classify Breast Density with Noisy Labels Regularization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2022.106885 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCN%2F2021%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation López-Almazán, H.; Perez-Benito, FJ.; Larroza, A.; Perez-Cortes, J.; Pollán, M.; Perez-Gomez, B.; Salas-Trejo, D.... (2022). A Deep Learning Framework to classify Breast Density with Noisy Labels Regularization. Computer Methods and Programs in Biomedicine. 221:1-11. https://doi.org/10.1016/j.cmpb.2022.106885 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https:\\doi.org\10.1016/j.cmpb.2022.106885 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 221 es_ES
dc.identifier.pmid 35594581 es_ES
dc.relation.pasarela S\465306 es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem