- -

Portable magnetic resonance imaging of patients indoors, outdoors and at home

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Portable magnetic resonance imaging of patients indoors, outdoors and at home

Show full item record

Guallart-Naval, T.; Algarín-Guisado, JM.; Pellicer-Guridi, R.; Galve-Conde, F.; Vives-Gilabert, Y.; Bosch-Esteve, R.; Pallás, E.... (2022). Portable magnetic resonance imaging of patients indoors, outdoors and at home. Scientific Reports. 12(1):1-11. https://doi.org/10.1038/s41598-022-17472-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192617

Files in this item

Item Metadata

Title: Portable magnetic resonance imaging of patients indoors, outdoors and at home
Author: Guallart-Naval, Teresa Algarín-Guisado, José Miguel Pellicer-Guridi, Rubén Galve-Conde, Fernando Vives-Gilabert, Yolanda Bosch-Esteve, Rubén Pallás, Eduardo González, José M. Rigla, Juan P. Martínez, Pablo Lloris, Francisco J. Borreguero-Morata, José Marcos-Perucho, Álvaro Negnevitsky, Vlad Martí-Bonmatí, Luis Rios, Alfonso Benlloch Baviera, Jose María Alonso-Otamendi, Joseba
Issued date:
[EN] Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance ...[+]
Copyrigths: Reconocimiento (by)
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-022-17472-w
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-022-17472-w
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C21/ES/IMAGEN FOTOACUSTICA CON NANOPARTICUTLAS CON PROPIEDADES OPTOELECTRONICAS Y MAGNETICAS/
This work was supported by the Ministerio de Ciencia e Innovacion of Spain through research grant PID2019-111436RB-C21. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo ...[+]
Type: Artículo


Haacke, E. M. et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design Vol. 82 (Wiley, New York, 1999).

Marques, J. P., Simonis, F. F. & Webb, A. G. Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging 49(6), 1528–1542. https://doi.org/10.1002/jmri.26637 (2019).

Sarracanie, M. & Salameh, N. Low-field MRI: How low can we go? A fresh view on an old debate. Front. Phys. 8, 172. https://doi.org/10.3389/fphy.2020.00172 (2020). [+]
Haacke, E. M. et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design Vol. 82 (Wiley, New York, 1999).

Marques, J. P., Simonis, F. F. & Webb, A. G. Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging 49(6), 1528–1542. https://doi.org/10.1002/jmri.26637 (2019).

Sarracanie, M. & Salameh, N. Low-field MRI: How low can we go? A fresh view on an old debate. Front. Phys. 8, 172. https://doi.org/10.3389/fphy.2020.00172 (2020).

Wald, L. L., McDaniel, P. C., Witzel, T., Stockmann, J. P. & Cooley, C. Z. Low-cost and portable MRI. J. Magn. Reson. Imaging 52(3), 686–696. https://doi.org/10.1002/JMRI.26942 (2020).

Watson, R. E. Lessons learned from MRI safety events. Curr. Radiol. Rep. 3(10), 1–7. https://doi.org/10.1007/S40134-015-0122-Z (2015).

Panych, L. P. & Madore, B. The physics of MRI safety. J. Magn. Reson. Imaging 47(1), 28–43. https://doi.org/10.1002/JMRI.25761 (2018).

Price, D. L., De Wilde, J. P., Papadaki, A. M., Curran, J. S. & Kitney, R. I. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J. Mag. Reson. Imaging Off. J. Int. Soc. Mag. Reson. Med. https://doi.org/10.1002/1522-2586 (2001).

Lüdeke, K. M., Röschmann, P. & Tischler, R. Susceptibility artefacts in NMR imaging. Magn. Reson. Imaging 3(4), 329–343. https://doi.org/10.1016/0730-725X(85)90397-2 (1985).

Harris, C. A. & White, L. M. Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop. Clin. North Am. 37(3), 349–359. https://doi.org/10.1016/J.OCL.2006.04.001 (2006).

Stradiotti, P., Curti, A., Castellazzi, G. & Zerbi, A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: State of the art. Eur. Spine J. 18(SUPPL. 1), 102–108. https://doi.org/10.1007/S00586-009-0998-5 (2009).

Cooley, C. Z. et al. A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5(3), 229–239. https://doi.org/10.1038/s41551-020-00641-5 (2020).

O’Reilly, T., Teeuwisse, W. M., Gans, D., Koolstra, K. & Webb, A. G. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Mag. Reson. Med. https://doi.org/10.1002/mrm.28396 (2020).

Algarín, J. M. et al. Simultaneous imaging of hard and soft biological tissues in a low-field dental MRI scanner. Sci. Rep. 10(1), 21–470. https://doi.org/10.1038/s41598-020-78456-2 (2020).

Borreguero, J., González, J. M., Pallás, E., Rigla J. P., Algarín, J. M., Bosch, R., Galve, F., Grau-Ruiz, D., Pellicer, R., Ríos, A., Benlloch, J. M., Alonso, J. Prepolarized MRI of hard tissues and solid-state matter. NMR Biomed. e4737 (2022). https://doi.org/10.1002/NBM.4737

Borreguero, J., Galve, F., Algarín, J. M., Benlloch, J. M., Alonso,J. Slice-selective zero echo time imaging of ultra-short T2 tissues based on spin-locking. arXiv:2201.06305 (2022).

O’Reilly, T. & Webb, A. G. In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn. Reson. Med. 87(2), 884–895. https://doi.org/10.1002/MRM.29009 (2021).

Sarracanie, M. Fast quantitative low-field magnetic resonance imaging with OPTIMUM - optimized magnetic resonance fingerprinting using a stationary steady-state cartesian approach and accelerated acquisition schedules. Invest. Radiol. https://doi.org/10.1097/RLI.0000000000000836 (2021).

Rutt, B. K. & Lee, D. H. The impact of field strength on image quality in MRI. J. Magn. Reson. Imaging 6(1), 57–62. https://doi.org/10.1002/JMRI.1880060111 (1996).

Ghazinoor, S., Crues, J. V. & Crowley, C. Low-field musculoskeletal MRI. J. Magn. Reson. Imaging 25(2), 234–244. https://doi.org/10.1002/jmri.20854 (2007).

Koonjoo, N., Zhu, B., Bagnall, G. C., Bhutto, D. & Rosen, M. S. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep. 11(1), 1–16. https://doi.org/10.1038/s41598-021-87482-7 (2021).

Garcia Hernandez, A., Fau,P., Rapacchi, S., Wojak, J., Mailleux,H., Benkreira, M., Adel, M. Improving Image Quality in Low-Field MRI with Deep Learning 60–263 (2021). https://doi.org/10.1109/ICIP42928.2021.9506659

Nakagomi, M. et al. Development of a small car-mounted magnetic resonance imaging system for human elbows using a 0.2 T permanent magnet. J. Mag. Reson. 304, 1–6. https://doi.org/10.1016/j.jmr.2019.04.017 (2019).

Deoni, S. C. et al. Residential MRI: Development of a mobile anywhere-everywhere MRI lab. Res. Sq. https://doi.org/10.21203/RS.3.RS-1121934/V1 (2021).

...Sheth, K. N. et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47. https://doi.org/10.1001/JAMANEUROL.2020.3263 (2021).

Mazurek, M. H. et al. Low-field, portable magnetic resonance imaging at the bedside to assess brain injury in patients with severe COVID-19 (1349). Neurology https://doi.org/10.7759/CUREUS.15841 (2021).

Sarracanie, M. et al. Low-cost high-performance MRI. Sci. Rep. 5(1), 15–177. https://doi.org/10.1038/srep15177 (2015).

Maggioni, M., Katkovnik, V., Egiazarian, K. & Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133. https://doi.org/10.1109/TIP.2012.2210725 (2013).

Van Speybroeck, C., O’Reilly, T., Teeuwisse, W., Arnold, P. & Webb, A. Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (<100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems. Phys. Med. 84, 116–124. https://doi.org/10.1016/j.ejmp.2021.04.003 (2021).

ZimmermanCooley, C. et al. Design of sparse halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans. Mag. https://doi.org/10.1109/TMAG.2017.2751001 (2017).

Purchase, A. R. et al. A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9, 95294–95303. https://doi.org/10.1109/ACCESS.2021.3093530 (2021).

Liu, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat. Commun. 12(1), 1–14. https://doi.org/10.1038/s41467-021-27317-1 (2021).

Van Reeth, E., Tham, I. W. K., Tan, C. H. & Poh, C. L. Super-resolution in magnetic resonance imaging: A review. Concepts Mag. Reson. Part A 40A(6), 306–325. https://doi.org/10.1002/cmr.a.21249 (2012).

Iglesias J. E, Schleicher R., Laguna S., Billot B., Schaefer P., McKaig, B., Goldstein,J. N., Sheth, K. N., Rosen, M. S., Kimberly, W. T. Accurate super-resolution low-field brain mri. arXiv preprint arXiv:2202.03564 (2022).

Küstner, T. et al. Automated reference-free detection of motion artifacts in magnetic resonance images. Magn. Reson. Mater. Phys. Biol. Med. 31(2), 243–256. https://doi.org/10.1007/S10334-017-0650-Z/FIGURES/10 (2018).

Simpson, G. et al. Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: A pilot study. Med. Phys. 47(8), 3682–3690. https://doi.org/10.1002/MP.14200 (2020).

Waddington, D. E., Boele, T., Maschmeyer, R., Kuncic, Z. & Rosen, M. S. High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Sci. Adv. 6(29), 998–1015. https://doi.org/10.1126/sciadv.abb0998 (2020).

O’Reilly, T., Teeuwisse, W. & Webb, A. Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. J. Mag. Reson. 307, 106–578. https://doi.org/10.1016/j.jmr.2019.106578 (2019).

OCRA1 - SPI controlled 4 channel 18 BIT DAC and RF attenuator. https://zeugmatographix.org/ocra/2020/11/27/ocra1-spi-controlled-4-channel-18bit-dac-and-rf-attenutator/

STEMlab 122.88-16 SDR kit basic. https://www.redpitaya.com/p52/stemlab-12288-16-sdr-kit-basic

Guallart-Naval T., et al., Benchmarking the performance of a low-cost Magnetic Resonance Control System at multiple sites in the open MaRCoS community. arXiv preprint arXiv:2203.11314 (2022).

Negnevitsky, V., O’Reilly, T., Pellicer-Guridi, R., Vives-Gilabert, Y., Craven-Brightman, L., Schote, D., Algarín, J. M., Prier, M., Stockmann, J., Witzel, T., Menküc, B., Alonso, J., Webb, A. in Book of Abstracts ESMRMB 2021 38th Annual Scientific Meeting, Vol. 34, 172. (Springer, New York, 2021). https://doi.org/10.1007/s10334-021-00947-8

Craven-Brightman, L., O’Reilly, T., Menküc, B., Prier, M., Pellicer-Guridi, R., Alonso, J., Wald, L. L., Zaitsev, M., Stockmann, J., Witzel, T., Webb, A., Negnevitsky, V. in Proceedings of the 2021 ISMRM & SMRT Annual Meeting and Exhibition, Abstract 0748 (ISMRM, 2021). https://cds.ismrm.org/protected/21MPresentations/abstracts/0748.html

Koolstra, K., O’Reilly, T., Börnert, P. & Webb, A. Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities. Magn. Reson. Mater. Phys. Biol. Med. 34(4), 631–642. https://doi.org/10.1007/S10334-021-00907-2 (2021).




This item appears in the following Collection(s)

Show full item record