- -

Portable magnetic resonance imaging of patients indoors, outdoors and at home

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Portable magnetic resonance imaging of patients indoors, outdoors and at home

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guallart-Naval, Teresa es_ES
dc.contributor.author Algarín-Guisado, José Miguel es_ES
dc.contributor.author Pellicer-Guridi, Rubén es_ES
dc.contributor.author Galve-Conde, Fernando es_ES
dc.contributor.author Vives-Gilabert, Yolanda es_ES
dc.contributor.author Bosch-Esteve, Rubén es_ES
dc.contributor.author Pallás, Eduardo es_ES
dc.contributor.author González, José M. es_ES
dc.contributor.author Rigla, Juan P. es_ES
dc.contributor.author Martínez, Pablo es_ES
dc.contributor.author Lloris, Francisco J. es_ES
dc.contributor.author Borreguero-Morata, José es_ES
dc.contributor.author Marcos-Perucho, Álvaro es_ES
dc.contributor.author Negnevitsky, Vlad es_ES
dc.contributor.author Martí-Bonmatí, Luis es_ES
dc.contributor.author Rios, Alfonso es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.contributor.author Alonso-Otamendi, Joseba es_ES
dc.date.accessioned 2023-03-27T18:01:27Z
dc.date.available 2023-03-27T18:01:27Z
dc.date.issued 2022-07-30 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192617
dc.description.abstract [EN] Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance imaging (MRI), the gold standard for numerous healthcare conditions, does not traditionally belong to this group. Recently, low-field MRI technology companies have demonstrated the first decisive steps towards portability within medical facilities and vehicles. However, these scanners' weight and dimensions are incompatible with more demanding use cases such as in remote and developing regions, sports facilities and events, medical and military camps, or home healthcare. Here we present in vivo images taken with a light, small footprint, low-field extremity MRI scanner outside the controlled environment provided by medical facilities. To demonstrate the true portability of the system and benchmark its performance in various relevant scenarios, we have acquired images of a volunteer's knee in: (i) an MRI physics laboratory; (ii) an office room; (iii) outside a campus building, connected to a nearby power outlet; (iv) in open air, powered from a small fuel-based generator; and (v) at the volunteer's home. All images have been acquired within clinically viable times, and signal-to-noise ratios and tissue contrast suffice for 2D and 3D reconstructions with diagnostic value. Furthermore, the volunteer carries a fixation metallic implant screwed to the femur, which leads to strong artifacts in standard clinical systems but appears sharp in our low-field acquisitions. Altogether, this work opens a path towards highly accessible MRI under circumstances previously unrealistic. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Ciencia e Innovacion of Spain through research grant PID2019-111436RB-C21. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022 and IDIFEDER/2021/004). JMG and JB acknowledge support from the Innodocto program of the Agencia Valenciana de la Innovacion (INNTA3/2020/22 and INNTA3/2021/17). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Portable magnetic resonance imaging of patients indoors, outdoors and at home es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-17472-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C21/ES/IMAGEN FOTOACUSTICA CON NANOPARTICUTLAS CON PROPIEDADES OPTOELECTRONICAS Y MAGNETICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F022//EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2021%2F004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNTA3%2F2020%2F22/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNTA3%2F2021%2F17/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Guallart-Naval, T.; Algarín-Guisado, JM.; Pellicer-Guridi, R.; Galve-Conde, F.; Vives-Gilabert, Y.; Bosch-Esteve, R.; Pallás, E.... (2022). Portable magnetic resonance imaging of patients indoors, outdoors and at home. Scientific Reports. 12(1):1-11. https://doi.org/10.1038/s41598-022-17472-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-17472-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35907975 es_ES
dc.identifier.pmcid PMC9338984 es_ES
dc.relation.pasarela S\481327 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.description.references Haacke, E. M. et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design Vol. 82 (Wiley, New York, 1999). es_ES
dc.description.references Marques, J. P., Simonis, F. F. & Webb, A. G. Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging 49(6), 1528–1542. https://doi.org/10.1002/jmri.26637 (2019). es_ES
dc.description.references Sarracanie, M. & Salameh, N. Low-field MRI: How low can we go? A fresh view on an old debate. Front. Phys. 8, 172. https://doi.org/10.3389/fphy.2020.00172 (2020). es_ES
dc.description.references Wald, L. L., McDaniel, P. C., Witzel, T., Stockmann, J. P. & Cooley, C. Z. Low-cost and portable MRI. J. Magn. Reson. Imaging 52(3), 686–696. https://doi.org/10.1002/JMRI.26942 (2020). es_ES
dc.description.references Watson, R. E. Lessons learned from MRI safety events. Curr. Radiol. Rep. 3(10), 1–7. https://doi.org/10.1007/S40134-015-0122-Z (2015). es_ES
dc.description.references Panych, L. P. & Madore, B. The physics of MRI safety. J. Magn. Reson. Imaging 47(1), 28–43. https://doi.org/10.1002/JMRI.25761 (2018). es_ES
dc.description.references Price, D. L., De Wilde, J. P., Papadaki, A. M., Curran, J. S. & Kitney, R. I. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J. Mag. Reson. Imaging Off. J. Int. Soc. Mag. Reson. Med. https://doi.org/10.1002/1522-2586 (2001). es_ES
dc.description.references Lüdeke, K. M., Röschmann, P. & Tischler, R. Susceptibility artefacts in NMR imaging. Magn. Reson. Imaging 3(4), 329–343. https://doi.org/10.1016/0730-725X(85)90397-2 (1985). es_ES
dc.description.references Harris, C. A. & White, L. M. Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop. Clin. North Am. 37(3), 349–359. https://doi.org/10.1016/J.OCL.2006.04.001 (2006). es_ES
dc.description.references Stradiotti, P., Curti, A., Castellazzi, G. & Zerbi, A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: State of the art. Eur. Spine J. 18(SUPPL. 1), 102–108. https://doi.org/10.1007/S00586-009-0998-5 (2009). es_ES
dc.description.references Cooley, C. Z. et al. A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5(3), 229–239. https://doi.org/10.1038/s41551-020-00641-5 (2020). es_ES
dc.description.references O’Reilly, T., Teeuwisse, W. M., Gans, D., Koolstra, K. & Webb, A. G. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Mag. Reson. Med. https://doi.org/10.1002/mrm.28396 (2020). es_ES
dc.description.references Algarín, J. M. et al. Simultaneous imaging of hard and soft biological tissues in a low-field dental MRI scanner. Sci. Rep. 10(1), 21–470. https://doi.org/10.1038/s41598-020-78456-2 (2020). es_ES
dc.description.references Borreguero, J., González, J. M., Pallás, E., Rigla J. P., Algarín, J. M., Bosch, R., Galve, F., Grau-Ruiz, D., Pellicer, R., Ríos, A., Benlloch, J. M., Alonso, J. Prepolarized MRI of hard tissues and solid-state matter. NMR Biomed. e4737 (2022). https://doi.org/10.1002/NBM.4737 es_ES
dc.description.references Borreguero, J., Galve, F., Algarín, J. M., Benlloch, J. M., Alonso,J. Slice-selective zero echo time imaging of ultra-short T2 tissues based on spin-locking. arXiv:2201.06305 (2022). es_ES
dc.description.references O’Reilly, T. & Webb, A. G. In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn. Reson. Med. 87(2), 884–895. https://doi.org/10.1002/MRM.29009 (2021). es_ES
dc.description.references Sarracanie, M. Fast quantitative low-field magnetic resonance imaging with OPTIMUM - optimized magnetic resonance fingerprinting using a stationary steady-state cartesian approach and accelerated acquisition schedules. Invest. Radiol. https://doi.org/10.1097/RLI.0000000000000836 (2021). es_ES
dc.description.references Rutt, B. K. & Lee, D. H. The impact of field strength on image quality in MRI. J. Magn. Reson. Imaging 6(1), 57–62. https://doi.org/10.1002/JMRI.1880060111 (1996). es_ES
dc.description.references Ghazinoor, S., Crues, J. V. & Crowley, C. Low-field musculoskeletal MRI. J. Magn. Reson. Imaging 25(2), 234–244. https://doi.org/10.1002/jmri.20854 (2007). es_ES
dc.description.references Koonjoo, N., Zhu, B., Bagnall, G. C., Bhutto, D. & Rosen, M. S. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep. 11(1), 1–16. https://doi.org/10.1038/s41598-021-87482-7 (2021). es_ES
dc.description.references Garcia Hernandez, A., Fau,P., Rapacchi, S., Wojak, J., Mailleux,H., Benkreira, M., Adel, M. Improving Image Quality in Low-Field MRI with Deep Learning 60–263 (2021). https://doi.org/10.1109/ICIP42928.2021.9506659 es_ES
dc.description.references Nakagomi, M. et al. Development of a small car-mounted magnetic resonance imaging system for human elbows using a 0.2 T permanent magnet. J. Mag. Reson. 304, 1–6. https://doi.org/10.1016/j.jmr.2019.04.017 (2019). es_ES
dc.description.references Deoni, S. C. et al. Residential MRI: Development of a mobile anywhere-everywhere MRI lab. Res. Sq. https://doi.org/10.21203/RS.3.RS-1121934/V1 (2021). es_ES
dc.description.references ...Sheth, K. N. et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47. https://doi.org/10.1001/JAMANEUROL.2020.3263 (2021). es_ES
dc.description.references Mazurek, M. H. et al. Low-field, portable magnetic resonance imaging at the bedside to assess brain injury in patients with severe COVID-19 (1349). Neurology https://doi.org/10.7759/CUREUS.15841 (2021). es_ES
dc.description.references Sarracanie, M. et al. Low-cost high-performance MRI. Sci. Rep. 5(1), 15–177. https://doi.org/10.1038/srep15177 (2015). es_ES
dc.description.references Maggioni, M., Katkovnik, V., Egiazarian, K. & Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133. https://doi.org/10.1109/TIP.2012.2210725 (2013). es_ES
dc.description.references Van Speybroeck, C., O’Reilly, T., Teeuwisse, W., Arnold, P. & Webb, A. Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (<100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems. Phys. Med. 84, 116–124. https://doi.org/10.1016/j.ejmp.2021.04.003 (2021). es_ES
dc.description.references ZimmermanCooley, C. et al. Design of sparse halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans. Mag. https://doi.org/10.1109/TMAG.2017.2751001 (2017). es_ES
dc.description.references Purchase, A. R. et al. A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9, 95294–95303. https://doi.org/10.1109/ACCESS.2021.3093530 (2021). es_ES
dc.description.references Liu, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat. Commun. 12(1), 1–14. https://doi.org/10.1038/s41467-021-27317-1 (2021). es_ES
dc.description.references Van Reeth, E., Tham, I. W. K., Tan, C. H. & Poh, C. L. Super-resolution in magnetic resonance imaging: A review. Concepts Mag. Reson. Part A 40A(6), 306–325. https://doi.org/10.1002/cmr.a.21249 (2012). es_ES
dc.description.references Iglesias J. E, Schleicher R., Laguna S., Billot B., Schaefer P., McKaig, B., Goldstein,J. N., Sheth, K. N., Rosen, M. S., Kimberly, W. T. Accurate super-resolution low-field brain mri. arXiv preprint arXiv:2202.03564 (2022). es_ES
dc.description.references Küstner, T. et al. Automated reference-free detection of motion artifacts in magnetic resonance images. Magn. Reson. Mater. Phys. Biol. Med. 31(2), 243–256. https://doi.org/10.1007/S10334-017-0650-Z/FIGURES/10 (2018). es_ES
dc.description.references Simpson, G. et al. Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: A pilot study. Med. Phys. 47(8), 3682–3690. https://doi.org/10.1002/MP.14200 (2020). es_ES
dc.description.references Waddington, D. E., Boele, T., Maschmeyer, R., Kuncic, Z. & Rosen, M. S. High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Sci. Adv. 6(29), 998–1015. https://doi.org/10.1126/sciadv.abb0998 (2020). es_ES
dc.description.references O’Reilly, T., Teeuwisse, W. & Webb, A. Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. J. Mag. Reson. 307, 106–578. https://doi.org/10.1016/j.jmr.2019.106578 (2019). es_ES
dc.description.references OCRA1 - SPI controlled 4 channel 18 BIT DAC and RF attenuator. https://zeugmatographix.org/ocra/2020/11/27/ocra1-spi-controlled-4-channel-18bit-dac-and-rf-attenutator/ es_ES
dc.description.references STEMlab 122.88-16 SDR kit basic. https://www.redpitaya.com/p52/stemlab-12288-16-sdr-kit-basic es_ES
dc.description.references Guallart-Naval T., et al., Benchmarking the performance of a low-cost Magnetic Resonance Control System at multiple sites in the open MaRCoS community. arXiv preprint arXiv:2203.11314 (2022). es_ES
dc.description.references Negnevitsky, V., O’Reilly, T., Pellicer-Guridi, R., Vives-Gilabert, Y., Craven-Brightman, L., Schote, D., Algarín, J. M., Prier, M., Stockmann, J., Witzel, T., Menküc, B., Alonso, J., Webb, A. in Book of Abstracts ESMRMB 2021 38th Annual Scientific Meeting, Vol. 34, 172. (Springer, New York, 2021). https://doi.org/10.1007/s10334-021-00947-8 es_ES
dc.description.references Craven-Brightman, L., O’Reilly, T., Menküc, B., Prier, M., Pellicer-Guridi, R., Alonso, J., Wald, L. L., Zaitsev, M., Stockmann, J., Witzel, T., Webb, A., Negnevitsky, V. in Proceedings of the 2021 ISMRM & SMRT Annual Meeting and Exhibition, Abstract 0748 (ISMRM, 2021). https://cds.ismrm.org/protected/21MPresentations/abstracts/0748.html es_ES
dc.description.references Koolstra, K., O’Reilly, T., Börnert, P. & Webb, A. Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities. Magn. Reson. Mater. Phys. Biol. Med. 34(4), 631–642. https://doi.org/10.1007/S10334-021-00907-2 (2021). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem