Mostrar el registro sencillo del ítem
dc.contributor.author | Guallart-Naval, Teresa | es_ES |
dc.contributor.author | Algarín-Guisado, José Miguel | es_ES |
dc.contributor.author | Pellicer-Guridi, Rubén | es_ES |
dc.contributor.author | Galve-Conde, Fernando | es_ES |
dc.contributor.author | Vives-Gilabert, Yolanda | es_ES |
dc.contributor.author | Bosch-Esteve, Rubén | es_ES |
dc.contributor.author | Pallás, Eduardo | es_ES |
dc.contributor.author | González, José M. | es_ES |
dc.contributor.author | Rigla, Juan P. | es_ES |
dc.contributor.author | Martínez, Pablo | es_ES |
dc.contributor.author | Lloris, Francisco J. | es_ES |
dc.contributor.author | Borreguero-Morata, José | es_ES |
dc.contributor.author | Marcos-Perucho, Álvaro | es_ES |
dc.contributor.author | Negnevitsky, Vlad | es_ES |
dc.contributor.author | Martí-Bonmatí, Luis | es_ES |
dc.contributor.author | Rios, Alfonso | es_ES |
dc.contributor.author | Benlloch Baviera, Jose María | es_ES |
dc.contributor.author | Alonso-Otamendi, Joseba | es_ES |
dc.date.accessioned | 2023-03-27T18:01:27Z | |
dc.date.available | 2023-03-27T18:01:27Z | |
dc.date.issued | 2022-07-30 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192617 | |
dc.description.abstract | [EN] Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance imaging (MRI), the gold standard for numerous healthcare conditions, does not traditionally belong to this group. Recently, low-field MRI technology companies have demonstrated the first decisive steps towards portability within medical facilities and vehicles. However, these scanners' weight and dimensions are incompatible with more demanding use cases such as in remote and developing regions, sports facilities and events, medical and military camps, or home healthcare. Here we present in vivo images taken with a light, small footprint, low-field extremity MRI scanner outside the controlled environment provided by medical facilities. To demonstrate the true portability of the system and benchmark its performance in various relevant scenarios, we have acquired images of a volunteer's knee in: (i) an MRI physics laboratory; (ii) an office room; (iii) outside a campus building, connected to a nearby power outlet; (iv) in open air, powered from a small fuel-based generator; and (v) at the volunteer's home. All images have been acquired within clinically viable times, and signal-to-noise ratios and tissue contrast suffice for 2D and 3D reconstructions with diagnostic value. Furthermore, the volunteer carries a fixation metallic implant screwed to the femur, which leads to strong artifacts in standard clinical systems but appears sharp in our low-field acquisitions. Altogether, this work opens a path towards highly accessible MRI under circumstances previously unrealistic. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Ciencia e Innovacion of Spain through research grant PID2019-111436RB-C21. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022 and IDIFEDER/2021/004). JMG and JB acknowledge support from the Innodocto program of the Agencia Valenciana de la Innovacion (INNTA3/2020/22 and INNTA3/2021/17). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | Portable magnetic resonance imaging of patients indoors, outdoors and at home | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-022-17472-w | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C21/ES/IMAGEN FOTOACUSTICA CON NANOPARTICUTLAS CON PROPIEDADES OPTOELECTRONICAS Y MAGNETICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F022//EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2021%2F004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNTA3%2F2020%2F22/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNTA3%2F2021%2F17/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Guallart-Naval, T.; Algarín-Guisado, JM.; Pellicer-Guridi, R.; Galve-Conde, F.; Vives-Gilabert, Y.; Bosch-Esteve, R.; Pallás, E.... (2022). Portable magnetic resonance imaging of patients indoors, outdoors and at home. Scientific Reports. 12(1):1-11. https://doi.org/10.1038/s41598-022-17472-w | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-022-17472-w | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 35907975 | es_ES |
dc.identifier.pmcid | PMC9338984 | es_ES |
dc.relation.pasarela | S\481327 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.description.references | Haacke, E. M. et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design Vol. 82 (Wiley, New York, 1999). | es_ES |
dc.description.references | Marques, J. P., Simonis, F. F. & Webb, A. G. Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging 49(6), 1528–1542. https://doi.org/10.1002/jmri.26637 (2019). | es_ES |
dc.description.references | Sarracanie, M. & Salameh, N. Low-field MRI: How low can we go? A fresh view on an old debate. Front. Phys. 8, 172. https://doi.org/10.3389/fphy.2020.00172 (2020). | es_ES |
dc.description.references | Wald, L. L., McDaniel, P. C., Witzel, T., Stockmann, J. P. & Cooley, C. Z. Low-cost and portable MRI. J. Magn. Reson. Imaging 52(3), 686–696. https://doi.org/10.1002/JMRI.26942 (2020). | es_ES |
dc.description.references | Watson, R. E. Lessons learned from MRI safety events. Curr. Radiol. Rep. 3(10), 1–7. https://doi.org/10.1007/S40134-015-0122-Z (2015). | es_ES |
dc.description.references | Panych, L. P. & Madore, B. The physics of MRI safety. J. Magn. Reson. Imaging 47(1), 28–43. https://doi.org/10.1002/JMRI.25761 (2018). | es_ES |
dc.description.references | Price, D. L., De Wilde, J. P., Papadaki, A. M., Curran, J. S. & Kitney, R. I. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J. Mag. Reson. Imaging Off. J. Int. Soc. Mag. Reson. Med. https://doi.org/10.1002/1522-2586 (2001). | es_ES |
dc.description.references | Lüdeke, K. M., Röschmann, P. & Tischler, R. Susceptibility artefacts in NMR imaging. Magn. Reson. Imaging 3(4), 329–343. https://doi.org/10.1016/0730-725X(85)90397-2 (1985). | es_ES |
dc.description.references | Harris, C. A. & White, L. M. Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop. Clin. North Am. 37(3), 349–359. https://doi.org/10.1016/J.OCL.2006.04.001 (2006). | es_ES |
dc.description.references | Stradiotti, P., Curti, A., Castellazzi, G. & Zerbi, A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: State of the art. Eur. Spine J. 18(SUPPL. 1), 102–108. https://doi.org/10.1007/S00586-009-0998-5 (2009). | es_ES |
dc.description.references | Cooley, C. Z. et al. A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5(3), 229–239. https://doi.org/10.1038/s41551-020-00641-5 (2020). | es_ES |
dc.description.references | O’Reilly, T., Teeuwisse, W. M., Gans, D., Koolstra, K. & Webb, A. G. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Mag. Reson. Med. https://doi.org/10.1002/mrm.28396 (2020). | es_ES |
dc.description.references | Algarín, J. M. et al. Simultaneous imaging of hard and soft biological tissues in a low-field dental MRI scanner. Sci. Rep. 10(1), 21–470. https://doi.org/10.1038/s41598-020-78456-2 (2020). | es_ES |
dc.description.references | Borreguero, J., González, J. M., Pallás, E., Rigla J. P., Algarín, J. M., Bosch, R., Galve, F., Grau-Ruiz, D., Pellicer, R., Ríos, A., Benlloch, J. M., Alonso, J. Prepolarized MRI of hard tissues and solid-state matter. NMR Biomed. e4737 (2022). https://doi.org/10.1002/NBM.4737 | es_ES |
dc.description.references | Borreguero, J., Galve, F., Algarín, J. M., Benlloch, J. M., Alonso,J. Slice-selective zero echo time imaging of ultra-short T2 tissues based on spin-locking. arXiv:2201.06305 (2022). | es_ES |
dc.description.references | O’Reilly, T. & Webb, A. G. In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn. Reson. Med. 87(2), 884–895. https://doi.org/10.1002/MRM.29009 (2021). | es_ES |
dc.description.references | Sarracanie, M. Fast quantitative low-field magnetic resonance imaging with OPTIMUM - optimized magnetic resonance fingerprinting using a stationary steady-state cartesian approach and accelerated acquisition schedules. Invest. Radiol. https://doi.org/10.1097/RLI.0000000000000836 (2021). | es_ES |
dc.description.references | Rutt, B. K. & Lee, D. H. The impact of field strength on image quality in MRI. J. Magn. Reson. Imaging 6(1), 57–62. https://doi.org/10.1002/JMRI.1880060111 (1996). | es_ES |
dc.description.references | Ghazinoor, S., Crues, J. V. & Crowley, C. Low-field musculoskeletal MRI. J. Magn. Reson. Imaging 25(2), 234–244. https://doi.org/10.1002/jmri.20854 (2007). | es_ES |
dc.description.references | Koonjoo, N., Zhu, B., Bagnall, G. C., Bhutto, D. & Rosen, M. S. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep. 11(1), 1–16. https://doi.org/10.1038/s41598-021-87482-7 (2021). | es_ES |
dc.description.references | Garcia Hernandez, A., Fau,P., Rapacchi, S., Wojak, J., Mailleux,H., Benkreira, M., Adel, M. Improving Image Quality in Low-Field MRI with Deep Learning 60–263 (2021). https://doi.org/10.1109/ICIP42928.2021.9506659 | es_ES |
dc.description.references | Nakagomi, M. et al. Development of a small car-mounted magnetic resonance imaging system for human elbows using a 0.2 T permanent magnet. J. Mag. Reson. 304, 1–6. https://doi.org/10.1016/j.jmr.2019.04.017 (2019). | es_ES |
dc.description.references | Deoni, S. C. et al. Residential MRI: Development of a mobile anywhere-everywhere MRI lab. Res. Sq. https://doi.org/10.21203/RS.3.RS-1121934/V1 (2021). | es_ES |
dc.description.references | ...Sheth, K. N. et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47. https://doi.org/10.1001/JAMANEUROL.2020.3263 (2021). | es_ES |
dc.description.references | Mazurek, M. H. et al. Low-field, portable magnetic resonance imaging at the bedside to assess brain injury in patients with severe COVID-19 (1349). Neurology https://doi.org/10.7759/CUREUS.15841 (2021). | es_ES |
dc.description.references | Sarracanie, M. et al. Low-cost high-performance MRI. Sci. Rep. 5(1), 15–177. https://doi.org/10.1038/srep15177 (2015). | es_ES |
dc.description.references | Maggioni, M., Katkovnik, V., Egiazarian, K. & Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133. https://doi.org/10.1109/TIP.2012.2210725 (2013). | es_ES |
dc.description.references | Van Speybroeck, C., O’Reilly, T., Teeuwisse, W., Arnold, P. & Webb, A. Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (<100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems. Phys. Med. 84, 116–124. https://doi.org/10.1016/j.ejmp.2021.04.003 (2021). | es_ES |
dc.description.references | ZimmermanCooley, C. et al. Design of sparse halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans. Mag. https://doi.org/10.1109/TMAG.2017.2751001 (2017). | es_ES |
dc.description.references | Purchase, A. R. et al. A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9, 95294–95303. https://doi.org/10.1109/ACCESS.2021.3093530 (2021). | es_ES |
dc.description.references | Liu, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat. Commun. 12(1), 1–14. https://doi.org/10.1038/s41467-021-27317-1 (2021). | es_ES |
dc.description.references | Van Reeth, E., Tham, I. W. K., Tan, C. H. & Poh, C. L. Super-resolution in magnetic resonance imaging: A review. Concepts Mag. Reson. Part A 40A(6), 306–325. https://doi.org/10.1002/cmr.a.21249 (2012). | es_ES |
dc.description.references | Iglesias J. E, Schleicher R., Laguna S., Billot B., Schaefer P., McKaig, B., Goldstein,J. N., Sheth, K. N., Rosen, M. S., Kimberly, W. T. Accurate super-resolution low-field brain mri. arXiv preprint arXiv:2202.03564 (2022). | es_ES |
dc.description.references | Küstner, T. et al. Automated reference-free detection of motion artifacts in magnetic resonance images. Magn. Reson. Mater. Phys. Biol. Med. 31(2), 243–256. https://doi.org/10.1007/S10334-017-0650-Z/FIGURES/10 (2018). | es_ES |
dc.description.references | Simpson, G. et al. Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: A pilot study. Med. Phys. 47(8), 3682–3690. https://doi.org/10.1002/MP.14200 (2020). | es_ES |
dc.description.references | Waddington, D. E., Boele, T., Maschmeyer, R., Kuncic, Z. & Rosen, M. S. High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Sci. Adv. 6(29), 998–1015. https://doi.org/10.1126/sciadv.abb0998 (2020). | es_ES |
dc.description.references | O’Reilly, T., Teeuwisse, W. & Webb, A. Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. J. Mag. Reson. 307, 106–578. https://doi.org/10.1016/j.jmr.2019.106578 (2019). | es_ES |
dc.description.references | OCRA1 - SPI controlled 4 channel 18 BIT DAC and RF attenuator. https://zeugmatographix.org/ocra/2020/11/27/ocra1-spi-controlled-4-channel-18bit-dac-and-rf-attenutator/ | es_ES |
dc.description.references | STEMlab 122.88-16 SDR kit basic. https://www.redpitaya.com/p52/stemlab-12288-16-sdr-kit-basic | es_ES |
dc.description.references | Guallart-Naval T., et al., Benchmarking the performance of a low-cost Magnetic Resonance Control System at multiple sites in the open MaRCoS community. arXiv preprint arXiv:2203.11314 (2022). | es_ES |
dc.description.references | Negnevitsky, V., O’Reilly, T., Pellicer-Guridi, R., Vives-Gilabert, Y., Craven-Brightman, L., Schote, D., Algarín, J. M., Prier, M., Stockmann, J., Witzel, T., Menküc, B., Alonso, J., Webb, A. in Book of Abstracts ESMRMB 2021 38th Annual Scientific Meeting, Vol. 34, 172. (Springer, New York, 2021). https://doi.org/10.1007/s10334-021-00947-8 | es_ES |
dc.description.references | Craven-Brightman, L., O’Reilly, T., Menküc, B., Prier, M., Pellicer-Guridi, R., Alonso, J., Wald, L. L., Zaitsev, M., Stockmann, J., Witzel, T., Webb, A., Negnevitsky, V. in Proceedings of the 2021 ISMRM & SMRT Annual Meeting and Exhibition, Abstract 0748 (ISMRM, 2021). https://cds.ismrm.org/protected/21MPresentations/abstracts/0748.html | es_ES |
dc.description.references | Koolstra, K., O’Reilly, T., Börnert, P. & Webb, A. Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities. Magn. Reson. Mater. Phys. Biol. Med. 34(4), 631–642. https://doi.org/10.1007/S10334-021-00907-2 (2021). | es_ES |