- -

Power Quality Monitoring Strategy Based on an Optimized Multi-domain Feature Selection for the Detection and Classification of Disturbances in Wind Generators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Power Quality Monitoring Strategy Based on an Optimized Multi-domain Feature Selection for the Detection and Classification of Disturbances in Wind Generators

Mostrar el registro completo del ítem

Elvira-Ortiz, DA.; Saucedo-Dorantes, JJ.; Osornio-Rios, RA.; Morinigo-Sotelo, D.; Antonino-Daviu, J. (2022). Power Quality Monitoring Strategy Based on an Optimized Multi-domain Feature Selection for the Detection and Classification of Disturbances in Wind Generators. Electronics. 11(2):1-25. https://doi.org/10.3390/electronics11020287

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192656

Ficheros en el ítem

Metadatos del ítem

Título: Power Quality Monitoring Strategy Based on an Optimized Multi-domain Feature Selection for the Detection and Classification of Disturbances in Wind Generators
Autor: Elvira-Ortiz, David A. Saucedo-Dorantes, Juan J. Osornio-Rios, Roque A. Morinigo-Sotelo, Daniel Antonino-Daviu, J.
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Wind generation is an essential power supply in the last time, as a renewable option. These wind generators are integrated with electrical machines that require correct functionality. However, the increasing use of ...[+]
Palabras clave: Artificial intelligence , Electrical machines , Optimization techniques , Self-organizing map , Power quality , Wind generation
Derechos de uso: Reconocimiento (by)
Fuente:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics11020287
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/electronics11020287
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/
info:eu-repo/grantAgreement/FONDECYT//FIN202011/
Agradecimientos:
This research was partially funded by FONDEC-UAQ 2020 FIN202011 project. It was also supported by the Spanish `Ministerio de Ciencia Innovacion y Universidades' and FEDER program in the framework of the `Proyectos de I+D ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem