Glowacz, A.; Tadeusiewicz, R.; Legutko, S.; Caesarendra, W.; Irfan, M.; Liu, H.; Brumercik, F.... (2021). Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Applied Acoustics. 179:1-14. https://doi.org/10.1016/j.apacoust.2021.108070
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192670
Título:
|
Fault diagnosis of angle grinders and electric impact drills using acoustic signals
|
Autor:
|
Glowacz, Adam
Tadeusiewicz, Ryszard
Legutko, Stanislaw
Caesarendra, Wahyu
Irfan, Muhammad
Liu, Hui
Brumercik, Frantisek
Gutten, Miroslav
Sulowicz, Maciej
Antonino-Daviu, J.
Sarkodie-Gyan, Thompson
Fracz, Pawel
Kumar, Anil
Xiang, Jiawei
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
|
Fecha difusión:
|
|
Resumen:
|
[EN] Electric motors use about 68% of total generated electricity. Fault diagnosis of electrical motors is an important task, because it allows saving a large amount of money and time. An analysis of acoustic signals is a ...[+]
[EN] Electric motors use about 68% of total generated electricity. Fault diagnosis of electrical motors is an important task, because it allows saving a large amount of money and time. An analysis of acoustic signals is a promising tool to improve the accuracy of fault diagnosis. It is essential to analyze acoustic signals to assess the state of the motor. In this paper, three electric impact drills (EID) were analyzed using acoustic signals: healthy EID, EID with damaged rear bearing, EID with damaged front bearing. Three angle grinders (AG) were analyzed: healthy AG, AG with 1 blocked air inlet, AG with 2 blocked air inlets. The authors proposed a method for feature extraction: SMOFS-NFC (Shortened Method of Frequencies Selection Nearest Frequency Components). Acoustic features vectors were classified by the nearest neighbor classifier and Naive Bayes classifier. The classification accuracy were in the range of 89.33¿97.33% for three electric impact drills. The classification accuracy were in the range of 90.66¿100% for three angle grinders. The presented method is very useful for diagnosis of bearings, ventilation faults and other mechanical faults of power tools. It can be also useful for diagnosis of similar power tools.
[-]
|
Palabras clave:
|
Degradation
,
Acoustic
,
Fault diagnosis
,
Bearings
,
Power tool
,
Ventilation
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Fuente:
|
Applied Acoustics. (issn:
0003-682X
)
|
DOI:
|
10.1016/j.apacoust.2021.108070
|
Editorial:
|
Elsevier
|
Versión del editor:
|
https://doi.org/10.1016/j.apacoust.2021.108070
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F224//TECNICAS AVANZADAS PARA LA MONITORIZACION FIABLE DEL ESTADO DEL AISLAMIENTO EN MOTORES ELECTRICOS INDUSTRIALES/
|
Agradecimientos:
|
This work was supported in part by Generalitat Valenciana, Conselleria de Innovacion, Universidades, ' Ciencia y Sociedad Digital, (project AICO/019/224).
|
Tipo:
|
Artículo
|