- -

Fault diagnosis of angle grinders and electric impact drills using acoustic signals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fault diagnosis of angle grinders and electric impact drills using acoustic signals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Glowacz, Adam es_ES
dc.contributor.author Tadeusiewicz, Ryszard es_ES
dc.contributor.author Legutko, Stanislaw es_ES
dc.contributor.author Caesarendra, Wahyu es_ES
dc.contributor.author Irfan, Muhammad es_ES
dc.contributor.author Liu, Hui es_ES
dc.contributor.author Brumercik, Frantisek es_ES
dc.contributor.author Gutten, Miroslav es_ES
dc.contributor.author Sulowicz, Maciej es_ES
dc.contributor.author Antonino-Daviu, J. es_ES
dc.contributor.author Sarkodie-Gyan, Thompson es_ES
dc.contributor.author Fracz, Pawel es_ES
dc.contributor.author Kumar, Anil es_ES
dc.contributor.author Xiang, Jiawei es_ES
dc.date.accessioned 2023-03-31T18:01:13Z
dc.date.available 2023-03-31T18:01:13Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 0003-682X es_ES
dc.identifier.uri http://hdl.handle.net/10251/192670
dc.description.abstract [EN] Electric motors use about 68% of total generated electricity. Fault diagnosis of electrical motors is an important task, because it allows saving a large amount of money and time. An analysis of acoustic signals is a promising tool to improve the accuracy of fault diagnosis. It is essential to analyze acoustic signals to assess the state of the motor. In this paper, three electric impact drills (EID) were analyzed using acoustic signals: healthy EID, EID with damaged rear bearing, EID with damaged front bearing. Three angle grinders (AG) were analyzed: healthy AG, AG with 1 blocked air inlet, AG with 2 blocked air inlets. The authors proposed a method for feature extraction: SMOFS-NFC (Shortened Method of Frequencies Selection Nearest Frequency Components). Acoustic features vectors were classified by the nearest neighbor classifier and Naive Bayes classifier. The classification accuracy were in the range of 89.33¿97.33% for three electric impact drills. The classification accuracy were in the range of 90.66¿100% for three angle grinders. The presented method is very useful for diagnosis of bearings, ventilation faults and other mechanical faults of power tools. It can be also useful for diagnosis of similar power tools. es_ES
dc.description.sponsorship This work was supported in part by Generalitat Valenciana, Conselleria de Innovacion, Universidades, ' Ciencia y Sociedad Digital, (project AICO/019/224). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Acoustics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Degradation es_ES
dc.subject Acoustic es_ES
dc.subject Fault diagnosis es_ES
dc.subject Bearings es_ES
dc.subject Power tool es_ES
dc.subject Ventilation es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Fault diagnosis of angle grinders and electric impact drills using acoustic signals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apacoust.2021.108070 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F224//TECNICAS AVANZADAS PARA LA MONITORIZACION FIABLE DEL ESTADO DEL AISLAMIENTO EN MOTORES ELECTRICOS INDUSTRIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Glowacz, A.; Tadeusiewicz, R.; Legutko, S.; Caesarendra, W.; Irfan, M.; Liu, H.; Brumercik, F.... (2021). Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Applied Acoustics. 179:1-14. https://doi.org/10.1016/j.apacoust.2021.108070 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apacoust.2021.108070 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 179 es_ES
dc.relation.pasarela S\431570 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem