Mostrar el registro sencillo del ítem
dc.contributor.author | Chacon, Jesús | es_ES |
dc.contributor.author | Goncalves, Daniela | es_ES |
dc.contributor.author | Besada, Eva | es_ES |
dc.contributor.author | López-Orozco, Jose Antonio | es_ES |
dc.date.accessioned | 2023-04-18T12:00:13Z | |
dc.date.available | 2023-04-18T12:00:13Z | |
dc.date.issued | 2023-03-31 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/192795 | |
dc.description.abstract | [EN] This article presents the remote laboratory designed at the Complutense University of Madrid (UCM) to provide remote access, through the Internet, to theeducational robot Dobot Magician. The software of the remote lab consists of the ReNoLabs web server (programmed in Node.js) that manages the access to the lab, displays its web pages, and serves as a communication gateway between the control software (programmed in Python) that interacts directly with the robot) and the web graphical interface of the experience (designed in EJsS). EJsS is also used to centrally manage the lab, after expanding its functionality through a Plugin. In addition, the above software, created with free software tools, runs on a Raspberry Pi and the web interface of the experience can be integrated, if desired, into a general learning management system such as Moodle. Finally, the article also presents a couple of practical examples of the use of the remote laboratory. | es_ES |
dc.description.abstract | [ES] Este artículo presenta el laboratorio remoto diseñado en la Universidad Complutense de Madrid (UCM) para dar acceso remoto, a través de Internet, al robot educativo Dobot Magician. El software del laboratorio remoto está formado por el servidor web ReNoLabs (programado en Node.js) que gestiona el acceso al laboratorio, despliega sus páginas web, y sirve como pasarela de comunicación entre el software de control (programado en Python) que interactúa directamente con el robot) y la interfaz gráfica web de la experiencia (diseñada en EJsS). EJsS también se utiliza para gestionar de forma centralizada el laboratorio, al haber ampliado su funcionalidad mediante un Plugin. Además, el software anterior, creado con herramientas software gratuitas, se ejecuta sobre una Raspberry Pi y el interfaz web de la experiencia puede integrarse, si así se desea, en un sistema de gestión de aprendizaje general como Moodle. Finalmente, el artículo también presenta un par de ejemplos de uso del laboratorio remoto. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado con el apoyo del programa de Proyectos de Innovación Educativa y Mejora de la Calidad Docente de la Universidad Complutense de Madrid (concretamente a través de los proyectos 2019 /20-139 y 2021/22-39). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Robotics Education | es_ES |
dc.subject | Remote Laboratory | es_ES |
dc.subject | Robotic Arms | es_ES |
dc.subject | Robot Programming | es_ES |
dc.subject | EJsS | es_ES |
dc.subject | Robótica Educativa | es_ES |
dc.subject | Laboratorios Remotos | es_ES |
dc.subject | Brazo Robótico | es_ES |
dc.subject | Programación de Robot | es_ES |
dc.title | Un laboratorio remoto de código abierto y bajo coste para el brazo robótico educativo Dobot Magician | es_ES |
dc.title.alternative | A low-cost open-source remote laboratory for the educational robot arm Dobot Magician | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.17477 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM//2019%2F20-139 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM//2021%2F22-39 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Chacon, J.; Goncalves, D.; Besada, E.; López-Orozco, JA. (2023). Un laboratorio remoto de código abierto y bajo coste para el brazo robótico educativo Dobot Magician. Revista Iberoamericana de Automática e Informática industrial. 20(2):124-136. https://doi.org/10.4995/riai.2022.17477 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.17477 | es_ES |
dc.description.upvformatpinicio | 124 | es_ES |
dc.description.upvformatpfin | 136 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\17477 | es_ES |
dc.contributor.funder | Universidad Complutense de Madrid | es_ES |
dc.description.references | ACL Webpage, 2022. http://www.theoldrobots.com/book45/ACL28-Ctrl-B.pdf, Accessed: 2022-03-15. | es_ES |
dc.description.references | Aizpuru-Rueda, I., Besada-Portas, E., Chacon, J., Lopez-Orozco, J. A., 2019. Despliegue automatico de laboratorios remotos extendiendo las capacidades de EJsS. In: XL Jornadas de Automatica. | es_ES |
dc.description.references | Angulo, I., García-Zubía, J., Hernández-Jayo, U., Uriarte, I., Rodríguez-Gil, L., Orduña, P., Martínez Pieper, G., 2017. Roboblock: A remote lab for robotics and visual programming. In: 4th Experiment@International Conference. https://doi.org/10.1109/EXPAT.2017.7984373 | es_ES |
dc.description.references | Bermudez-Ortega, J., Besada-Portas, E., de la Torre, L., Lopez-Orozco, J. A., de la Cruz, J. M., 2016a. Lightweight Node.js & EJsS-based web server for remote control laboratories. In: IFAC Symposium on Advances in Control Education. | es_ES |
dc.description.references | Bermudez-Ortega, J., Besada-Portas, E., Lopez-Orozco, J. A., Bonache-Seco, J., de la Cruz, J. M., 2015. Remote web-based control laboratory for mobile devices based on EJsS, Raspberry Pi and Node.js. In: IFAC Workshop on Internet Based Control Education. | es_ES |
dc.description.references | Bermudez-Ortega, J., Besada-Portas, E., Lopez-Orozco, J. A., Chacon, J., de la Cruz, J. M., 2016b. Developing web & TwinCAT PLC-based remote control laboratories for modern web-browsers or mobile devices. In: 2016 IEEE Conference on Control Applications. https://doi.org/10.1109/CCA.2016.7587918 | es_ES |
dc.description.references | Bermudez-Ortega, J., Besada-Portas, E., Lopez-Orozco, J. A., de la Cruz, J. M., 2017. A new open-source and smart device accessible remote control laboratory. In: 4th Experiment@ International Conference. https://doi.org/10.1109/EXPAT.2017.7984376 | es_ES |
dc.description.references | Bhute, V. J., Inguva, P., Shah, U., Brechtelsbauer, C., 2021. Transforming traditional teaching laboratories for effective remote deliveryˆaa review. Education for Chemical Engineers 35, 96-104. https://doi.org/10.1016/j.ece.2021.01.008 | es_ES |
dc.description.references | Carballo, J. A., Bonilla, J., Roca, L., Berenguel, M., 2018. New low-cost solar tracking system based on open source hardware for educational purposes. Solar Energy 174, 826-836. https://doi.org/10.1016/j.solener.2018.09.064 | es_ES |
dc.description.references | Chacon, J., Besada-Portas, E., Carazo-Barbero, G., Lopez-Orozco, J. A., 2021. Enhancing EJsS with extension plugins. Electronics 10 (3). https://doi.org/10.3390/electronics10030242 | es_ES |
dc.description.references | Chaos, D., Chacon, J., Lopez-Orozco, J. A., Dormido, S., 2013. Virtual and remote robotic laboratory using ejs, matlab and labview. Sensors 13 (2). https://doi.org/10.3390/s130202595 | es_ES |
dc.description.references | Cyton Webpage, 2022. https://robots.ros.org/cyton-gamma/, Accessed: 2022-03-15. | es_ES |
dc.description.references | de la Torre, L., Sanchez, J., Dormido, S., 2016. What remote labs can do for you. Physics Today 69. https://doi.org/10.1063/PT.3.3139 | es_ES |
dc.description.references | Dobot Webpage, 2022. https://www.dobot.cc, Accessed: 2022-03-15. | es_ES |
dc.description.references | dos Santos Lopes, M. S., Pacheco-Gomes, I., Trindade, R. M. P., da Silva, A. F., de C. Lima, A. C., 2017. Web environment for programming and control of a mobile robot in a remote laboratory. IEEE Trans. on Learning Tech. 10 (4). https://doi.org/10.1109/TLT.2016.2627565 | es_ES |
dc.description.references | EJsS Webpage, 2022. http://fem.um.es/Ejs, Accessed: 2022-03-15. | es_ES |
dc.description.references | Esquembre, F., Garc'ıa Clemente, F. J., Chicon, R.,Wee, L. K., Kwang, L., Tan, D., 10 2019. Easy java/javascript simulations as a tool for learning analytics. In: 10th International Conference on Applied Innovations in IT, (ICAIIT). | es_ES |
dc.description.references | Fabregas, E., Farias, G., Dormido-Canto, S., Guinaldo, M., Sanchez, J., Dormido-Bencomo, S., 2016. Platform for teaching mobile robotics. Journal of Intelligent Robotic Systems 81. https://doi.org/10.1007/s10846-015-0229-8 | es_ES |
dc.description.references | Faulconer, E. K., Gruss, A. B., 2018. A review to weigh the pros and cons of online, remote, and distance science laboratory experiences. The International Review of Research in Open and Distributed Learning 19 (2). https://doi.org/10.19173/irrodl.v19i2.3386 | es_ES |
dc.description.references | Filipovic, F., Petronijevic, M., Mitrovic, N., Bankovic, B., 2017. Affordable virtual laboratory for remote control of variable speed drives. In: Int. Conf. on Information, Communication and Energy Systems and Tech. (ICEST). | es_ES |
dc.description.references | Fukumoto, H., Yamaguchi, T., Ishibashi, M., Furukawa, T., 2021. Developing a remote laboratory system of stepper motor for learning support. IEEE Transactions on Education 64 (3), 292-298. https://doi.org/10.1109/TE.2020.3042595 | es_ES |
dc.description.references | Galan, D., Isaksson, O., Rostedt, M., Enger, J., Hanstorp, D., de la Torre, L., 2018. A remote laboratory for optical levitation of charged droplets. European Journal of Physics 39. https://doi.org/10.1088/1361-6404/aaaac3 | es_ES |
dc.description.references | Gamage, K. A. A., Wijesuriya, D. I., Ekanayake, S. Y., Rennie, A. E. W., Lambert, C. G., Gunawardhana, N., 2020. Online delivery of teaching and laboratory practices: Continuity of university programmes during COVID-19 pandemic. Education Sciences 10 (10). https://doi.org/10.3390/educsci10100291 | es_ES |
dc.description.references | Gomes, L., 2009. Current trends in remote laboratories. IEEE Transactions on Industrial Electronics 56. https://doi.org/10.1109/TIE.2009.2033293 | es_ES |
dc.description.references | Goncalves-Lopez-Medrano, D. A., Chacon, J., Lopez-Orozco, J. A., Besada- Portas, E., 2021. Laboratorio remoto para el robot educativo Dobot Magician. In: XLII Jornadas de Automatica. https://doi.org/10.17979/spudc.9788497498043.232 | es_ES |
dc.description.references | Jara, C. A., Candelas, F. A., Puente, S. T., Torres, F., 2011. Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education 57. https://doi.org/10.1016/j.compedu.2011.07.003 | es_ES |
dc.description.references | Jimenez, R., Sanchez, O. A., Mauledeox, M., 2018. Remote lab for robotics applications. International Journal of Online and Biomedical Eng. 14 (1). https://doi.org/10.3991/ijoe.v14i01.7674 | es_ES |
dc.description.references | Kostaras, N., Xenos, M., Skodras, A., 2011. Evaluating usability in a distance digital systems laboratory class. IEEE Transactions on Education 54 (2). https://doi.org/10.1109/TE.2010.2054096 | es_ES |
dc.description.references | Letowski, B., Lavayssi'ere, C., Larroque, B., Luthon, F., 2019. An open source remote laboratory network based on a ready to use solution: LABOREM. In: Int. Conf. of Education, Research and Innovation (ICERI). https://doi.org/10.21125/iceri.2019.1380 | es_ES |
dc.description.references | Liddell, T. M., Kruschke, J. K., 2018. Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology 79, 328-348. https://doi.org/10.1016/j.jesp.2018.08.009 | es_ES |
dc.description.references | Losada-Gutierrez, C., Espinosa, F., Santos-Perez, C., Marron-Romera, M., Rodriguez-Ascariz, J., 2020. Remote control of a robotic unit: A case study for control engineering formation. IEEE Transactions on Education 63 (4). https://doi.org/10.1109/TE.2020.2975937 | es_ES |
dc.description.references | Ma, J., Nickerson, J. V., 2006. Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys 38 (7). https://doi.org/10.1145/1132960.1132961 | es_ES |
dc.description.references | Marin, R., Sanz, P. J., Nebot, P., Wirz, R., 2005. A multimodal interface to control a robot arm via the web: A case study on remote programming. IEEE Transactions on Industrial Electronics 52 (6). https://doi.org/10.1109/TIE.2005.858733 | es_ES |
dc.description.references | Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., Obdrzalek, D. (Eds.), 2020. Robotics in Education. Springer. https://doi.org/10.1007/978-3-030-26945-6 | es_ES |
dc.description.references | Mindstorms Webpage, 2022. https://www.lego.com/es-es/themes/mindstorms, Accessed: 2022-03-15. | es_ES |
dc.description.references | Moway Wepbage, 2022. http://moway-robot.com, Accessed: 2022-03-15. | es_ES |
dc.description.references | Nao Webpage, 2022. https://aliverobots.com/robot-nao/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Nickerson, J. V., Corter, J. E., Esche, S. K., Chassapis, C., 2007. A model for evaluating the effectiveness of remote engineering laboratories and simulations in education. Computers & Education 49 (3). https://doi.org/10.1016/j.compedu.2005.11.019 | es_ES |
dc.description.references | Node.js Webpage, 2022. https://nodejs.org/es/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Owi Webpage, 2022. https://owirobot.com/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Papadakis, S., Kalogiannakis, M., 2020. Handbook of Research on Using Educational Robotics to Facilitate Student Learning. IGI Global. https://doi.org/10.4018/978-1-7998-6717-3 | es_ES |
dc.description.references | PeggyJS Webpage, 2022. https://peggyjs.org/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Pepper Webpage, 2022. https://aliverobots.com/robot-pepper/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Pydobot Webpage, 2022. https://github.com/luismesas/pydobot, Accessed: 2022-03-15. | es_ES |
dc.description.references | Python Webpage, 2022. https://www.python.org/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Raspberry PI Webpage, 2022. https://www.raspberrypi.org/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Saenz, J., de la Torre, L., Chacon, J., Dormido, S., 2020. Learning planar robots with an open source online laboratory. In: 21th IFAC World Congress. https://doi.org/10.1016/j.ifacol.2020.12.1753 | es_ES |
dc.description.references | Scorbot Webpage, 2022. https://intelitek.com/scorbot-er-4ueducational-robot/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Socket.io Webpage, 2022. https://socket.io/, Accessed: 2022-03-15. | es_ES |
dc.description.references | Sanchez-Herrera, R., Marquez, M. A., , Andujar, J. M., 2020. Easy and secure handling of sensors and actuators as cloud-based service. IEEE Access 8. https://doi.org/10.1109/ACCESS.2020.2965639 | es_ES |
dc.description.references | Vagas, M., Sukop, M., Varga, J., 2016. Design and implementation of remote lab with industrial robot accessible through the web. Applied Mechanics and Materials 859. https://doi.org/10.4028/www.scientific.net/AMM.859.67 | es_ES |
dc.description.references | ZeroMQ Webpage, 2022. https://zeromq.org/, Accessed: 2022-03-15. | es_ES |