Mostrar el registro sencillo del ítem
dc.contributor.author | Belman-López, Carlos E. | es_ES |
dc.contributor.author | Jiménez-García, José A. | es_ES |
dc.contributor.author | Vázquez-Lopez, José A. | es_ES |
dc.contributor.author | Camarillo-Gómez, Karla A. | es_ES |
dc.date.accessioned | 2023-04-18T12:05:22Z | |
dc.date.available | 2023-04-18T12:05:22Z | |
dc.date.issued | 2023-03-31 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/192797 | |
dc.description.abstract | [EN] Industry 4.0 has become a priority and object of study for companies and research centers, although it is still in its early stages of implementation. In addition, companies face difficulties in developing solutions for Industry 4.0, without being sure how to address its essential requirements. A reference architecture explicitly addresses this problem, supports professionals in implementing solutions, being the basis of development, and providing support to face the challenges that Industry 4.0 represents. Therefore, the contribution of this document focuses on designing a reference architecture for systems and applications in Industry 4.0 based on cloud computing and data analysis, demonstrating its applicability through the implementation of a use case. Through this architecture, engineers and researchers will face the current challenges of smart production, in addition to researching, developing, and implementing guided, standardized solutions (applications and systems) at affordable costs that meet the requirements that govern Industry 4.0. | es_ES |
dc.description.abstract | [ES] El término Industria 4.0 se ha convertido en prioridad y objeto de estudio para empresas y centros de investigación pero aún se encuentra dentro de sus primeras etapas de implementación. Además, las compañías enfrentan dificultades al desarrollar soluciones para Industria 4.0, sin estar seguras de cómo afrontar sus requerimientos básicos. El diseño de una arquitectura de referencia aborda explícitamente este problema, apoya a los profesionales en la implementación de soluciones siendo la base del desarrollo y proporciona un soporte ante los desafíos que la Industria 4.0 representa. Por lo tanto, la contribución de este documento se centra en diseñar una arquitectura de referencia para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos, mostrando su viabilidad a través de la implementación en un caso de uso: Agricultura 4.0. Mediante esta arquitectura, ingenieros e investigadores podrán enfrentar los desafíos actuales de la producción inteligente, así como investigar, desarrollar e implementar soluciones (aplicaciones y sistemas) guiadas, estandarizadas y a costos accesibles, que cumplan los requerimientos que gobiernan Industria 4.0. | es_ES |
dc.description.sponsorship | Los autores agradecen al Consejo Nacional de Ciencia y Tecnología de México (CONACYT) por financiar esta investigación mediante una beca para estudios de posgrado (CVU 773443), al TecNM por el apoyo recibido a través de la convocatoria "Proyectos de Desarrollo Tecnológico e Innovación 2022" y al Dr. José Enrique Botello Álvarez por sus valiosas observaciones en el desarrollo de esta investigación. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Industry 4.0 | es_ES |
dc.subject | System architecture | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Data analysis | es_ES |
dc.subject | Applications development | es_ES |
dc.subject | Industria 4.0 | es_ES |
dc.subject | Arquitectura de sistemas | es_ES |
dc.subject | Computación en la nube | es_ES |
dc.subject | Análisis de datos | es_ES |
dc.subject | Desarrollo de aplicaciones | es_ES |
dc.title | Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos | es_ES |
dc.title.alternative | Design of an architecture for systems and applications in Industry 4.0 based on cloud computing and data analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.17791 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACYT//CVU 773443 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Belman-López, CE.; Jiménez-García, JA.; Vázquez-Lopez, JA.; Camarillo-Gómez, KA. (2023). Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos. Revista Iberoamericana de Automática e Informática industrial. 20(2):137-149. https://doi.org/10.4995/riai.2022.17791 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.17791 | es_ES |
dc.description.upvformatpinicio | 137 | es_ES |
dc.description.upvformatpfin | 149 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\17791 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Tecnológico Nacional de México | es_ES |
dc.description.references | Aheleroff, S., Xu, X., Zhong, R., & Lu, Y. (2021). Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Advanced Engineering Informatics, 1-15. https://doi.org/10.1016/j.aei.2020.101225 | es_ES |
dc.description.references | Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 16-21. https://doi.org/10.24840/2183-0606_003.004_0003 | es_ES |
dc.description.references | Amazon Web Services. (2022). Infrastructura Global. Obtenido de AWS: https://aws.amazon.com/es/about-aws/global-infrastructure/ | es_ES |
dc.description.references | Angulo, P., Guzmán, C., Jiménez, G., & Romero, D. (2016). A service-oriented architecture and its ICT infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. International Journal of Computer Integrated Manufacturing, 202-214. https://doi.org/10.1080/0951192X.2016.1145810 | es_ES |
dc.description.references | AWS. (2022). Regiones y zonas de disponibilidad. Obtenido de AWS: https://aws.amazon.com/es/about-aws/global-infrastructure/regions_az/ | es_ES |
dc.description.references | Azeem, M., Haleem, A., Shashi, B., Javaid, M., Suman, R., & Nandan, D. (2021). Big data applications to take up major challenges across manufacturing industries: A brief review. Materials Today: Proceedings, 1-10. https://doi.org/10.1016/j.matpr.2021.02.147 | es_ES |
dc.description.references | Bader, S., Berres, B., Boss, B., Gatterburg, A., & Hoffmeister, M. (Noviembre de 2021). Plattform Industrie 4.0. Obtenido de Details of the Asset Administration Shell - Interoperability at Runtime - Part 2: Exchanging Information via Application Programming Interfaces: https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html | es_ES |
dc.description.references | Bauer, J. (24 de Feb de 2021). Using container images to run TensorFlow models in AWS Lambda. Obtenido de AWS: https://aws.amazon.com/es/blogs/machine-learning/using-container-images-to-run-tensorflow-models-in-aws-lambda/ | es_ES |
dc.description.references | Belman-Lopez, C., Jiménez-García, J., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 432-447. https://doi.org/10.4995/riai.2020.12579 | es_ES |
dc.description.references | Belman-López, C., Jiménez-García, J., Vázquez-López, J., Hernández-González, S., & Franco-Barrón, J. (2020). Elementos fundamentales del sistema de manufactura inteligente en la era de Industria 4.0. Revista Internacional de Investigación e Innovación Tecnológica, 1-26. | es_ES |
dc.description.references | Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis services. International Journal of Computer Integrated Manufacturing, 31(7), 612-623. https://doi.org/10.1080/0951192X.2018.1425552 | es_ES |
dc.description.references | Carnell, J. (2017). Spring Microservices in Action. NY: Manning Publications Co. | es_ES |
dc.description.references | Cervantes Maceda, H., Velasco-Elizondo, P., & Castro Careaga, L. (2016). Arquitectura de Software. Conceptos y ciclo de desarrollo. Ciudad de México, México: CENGAGE Learning. | es_ES |
dc.description.references | Charro, A., & Schaefer, D. (2018). Cloud Manufacturing as a new type of Product-Service System. International Journal of Computer Integrated Manufacturing, 1018-1033. https://doi.org/10.1080/0951192X.2018.1493228 | es_ES |
dc.description.references | Chen, T., & Tsai, H.-R. (2016). Ubiquitous manufacturing: Current practices, challenges, and opportunities. Robotics and Computer-Integrated Manufacturing, 1-7. http://dx.doi.org/10.1016/j.rcim.2016.01.001 | es_ES |
dc.description.references | Dintén, R., López Martínez, P., & Zorrilla, M. (2021). Arquitectura de referencia para el diseño y desarrollo de aplicaciones para la Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 300-311. https://doi.org/10.4995/riai.2021.14532 | es_ES |
dc.description.references | Docker. (2021). Obtenido de Docker: https://www.docker.com/ | es_ES |
dc.description.references | Francalanza, E., Borg, J., & Constantinescu, C. (2018). Approaches for handling wicked manufacturing system design problems. Procedia CIRP, 67, 134-139. https://doi.org/10.1016/j.procir.2017.12.189 | es_ES |
dc.description.references | GE. (01 de Noviembre de 2018). Predix Platform | GE Digital. Obtenido de GE: https://www.ge.com/digital/iiot-platform | es_ES |
dc.description.references | Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for developing smart warehouses in Industry 4.0. Computers in Industry, 1-21. https://doi.org/10.1016/j.compind.2020.103343 | es_ES |
dc.description.references | Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic road0toward Industry 4.0. Journal of Manufacturing Technology Management, 910-936. https://doi.org/10.1108/JMTM-02-2018-0057 | es_ES |
dc.description.references | Google Cloud. (2018). Web API Design: The Missing Link. Google LLC. | es_ES |
dc.description.references | Gorton, I., & Klein, J. (2015). Distribution, Data, Deployment, Software Architecture Convergence in Big Data Systems. IEEE COMPUTER SOCIETY, 78-85. https://doi.org/10.1109/MS.2014.51 | es_ES |
dc.description.references | Groover, M. (2001). Automation, Production Systems, and Computer-Integrated Manufacturing. USA: Prentice Hall. | es_ES |
dc.description.references | Hermann, M., Otto, B., & Pentek, T. (2015). Design Principles for Industrie 4.0 Scenarios: A Literature Review. ResearchGate, 1-16. https://doi.org/10.1109/HICSS.2016.488 | es_ES |
dc.description.references | Hohpe, G., & Woolf, B. (2004). Enterprise Integration Patterns. Boston, MA: Addison-Wesley. | es_ES |
dc.description.references | Huang , M.-L., & Chuang, T. (2020). A database of eight common tomato pest images. Mendeley Data, V1. doi:10.17632/s62zm6djd2.1 | es_ES |
dc.description.references | ISA. (Octubre de 2019). Automation IT: RAMI 4.0 Reference Architectural Model for Industrie 4.0. Obtenido de International Society of Automation (ISA): https://www.isa.org/intech/20190405/ | es_ES |
dc.description.references | ISO/IEC/IEEE 42010. (10 de Jul de 2007). ISO/IEC/IEEE 42010: Defining "architecture". Obtenido de ISO/IEC/IEEE 42010: http://www.iso-architecture.org/ieee-1471/defining-architecture.html | es_ES |
dc.description.references | Jocher, G., Stoken, A., Chaurasia, A., Borovec, J., NanoCode012, TaoXie, . . . AlexWang1900. (2021). ultralytics/yolov5: v6.0. Zenodo. https://doi.org/10.5281/zenodo.5563715 | es_ES |
dc.description.references | Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 36-52. https://doi.org/10.1016/j.cirpj.2020.02.002 | es_ES |
dc.description.references | Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. National Academy of Science and Engineering (acatech)., 1-82. https://doi.org/10.3390/sci4030026 | es_ES |
dc.description.references | Kakani, V., Nguyen, V., Kumar, B., Kim, H., & Pasupuleti, V. (2020). A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 1-12. https://doi.org/10.1016/j.jafr.2020.100033 | es_ES |
dc.description.references | Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 1-13. https://doi.org/10.1016/j.eswa.2022.116912 | es_ES |
dc.description.references | Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 508-517. https://doi.org/10.1080/00207543.2017.1351644 | es_ES |
dc.description.references | Lee, J., Ardakani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP, 3-7. https://doi.org/10.1016/j.procir.2015.08.026 | es_ES |
dc.description.references | Lie, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 1-18. https://doi.org/10.1186/s13007-021-00722-9 | es_ES |
dc.description.references | Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019). A Cyber-Physical Machine Tools Platform using OPC UA and MTConnect. Journal of Manufacturing Systems, 1-14. https://doi.org/10.1016/j.jmsy.2019.04.006 | es_ES |
dc.description.references | Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on Cyber-physical Systems. Journal of Automatica Sinica, 27-40. https://doi.org/10.1109/JAS.2017.7510349 | es_ES |
dc.description.references | Liu, Z., Sampaio, P., Pishchulov, G., Mehandjiev, N., Cisneros-Cabrera, S., Schirrmann, A., . . . Bnouhanna, N. (2022). The architectural design and implementation of a digital platform for Industry 4.0 SME collaboration. Computers in Industry, 1-12. https://doi.org/10.1016/j.compind.2022.103623 | es_ES |
dc.description.references | López Martínez, P., Dintén, R., Drake, J., & Zorrilla, M. (2021). A big data-centric architecture metamodel for Industry 4.0. Future Generation Computer Systems, 263-284. https://doi.org/10.1016/j.future.2021.06.020 | es_ES |
dc.description.references | Lu, Y., Liu, C., Wang, K.-K., Huang, H., & Xu, X. (2019). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer Integrated Manufacturing, 1-14. https://doi.org/10.1016/j.rcim.2019.101837 | es_ES |
dc.description.references | Macías, A., Navarro, E., & González, P. (2019). A Microservice-Based Framework for Developing Internet of Things and People Applications. Proceedings, 1-13. https://doi.org/10.3390/proceedings2019031085 | es_ES |
dc.description.references | Malathi, V., & Gopinath, M. (2021). Classification of pest detection in paddy crop based on transfer learning approach. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science. https://doi.org/10.1080/09064710.2021.1874045 | es_ES |
dc.description.references | Miny, T., Stephan, G., Usländer, T., & Vialkowitsch, J. (Abril de 2021). Plattform Industrie 4.0. Obtenido de Functional View of the Asset Administration Shell in an Industrie 4.0 System Environment: https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html | es_ES |
dc.description.references | Mishra, A. (2019). Machine Learning in the AWS Cloud. Indianapolis, Indiana: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119556749 | es_ES |
dc.description.references | Nakagawa, E. Y., Antonino, P. O., Schnicke, F., Capilla, R., Kuhn, T., & Liggesmeyer, P. (2021). Industry 4.0 reference architectures: State of the art and future trends. Computers & Industrial Engineering, 1-13. https://doi.org/10.1016/j.cie.2021.107241 | es_ES |
dc.description.references | Niknejad, N., Ismail, W., Ghani, I., Nazari, B., Bahari, M., & Hussin, A. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 1-27. https://doi.org/10.1016/j.is.2020.101491 | es_ES |
dc.description.references | NIST. (16 de Abril de 2018). Framework for Improving Critical Infrastructure Cybersecurity. Obtenido de National Institute of Standards and Technology: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf | es_ES |
dc.description.references | Pallathadka, H., Sajja, G., Phasinam, K., Ritonga, M., Naved, M., Bansal, R., & Quiñonez-Choquecota, J. (2021). An investigation of various applications and related challenges in cloud computing. Materials Today: Proceedings, 1-5. https://doi.org/10.1016/j.matpr.2021.11.383 | es_ES |
dc.description.references | Pereira, A., & Romero, F. (2017). A review of the meaning and the implications of the Industry 4.0 concept. En P. Manufacturing (Ed.), Manufacturing Engineering Society International Conference (págs. 1206-1214). Vigo, España: Elsevier. https://doi.org/10.1016/j.promfg.2017.09.032 | es_ES |
dc.description.references | Poccia, D. (2016). AWS Lambda in Action. Manning. | es_ES |
dc.description.references | PwC Middle East. (23 de 10 de 2018). Big investments with big impacts and rapid returns. Obtenido de PwC Middle East : https://www.pwc.com/m1/en/publications/industry-40-survey/big-investments.html | es_ES |
dc.description.references | Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., . . . Nee, A. (2019). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 1-19. https://doi.org/10.1016/j.jmsy.2019.10.001 | es_ES |
dc.description.references | R, S., & R, S. (2017). Data Mining with Big Data. Intelligent Systems and Control (ISCO) (págs. 246-250). Coimbatore, India: IEEE. doi: 10.1109/ISCO.2017.7855990 | es_ES |
dc.description.references | RedHat. (2021). ¿Que es una api rest? Obtenido de RedHat: https://www.redhat.com/es/topics/api/what-is-a-rest-api#rest | es_ES |
dc.description.references | Richards, M. (2015). Software Arquitecture Patterns. Gravenstein Highway North, Sebastopol, CA: O'Reilly Media, Inc. | es_ES |
dc.description.references | Rosen, D. (2019). Thoughts on Design for Intelligent Manufacturing. Engineering, 1-6. https://doi.org/10.1016/j.eng.2019.07.011 | es_ES |
dc.description.references | Sahba, R., Radfar, R., Ghatari, A. R., & Ebrahimi, A. P. (2021). Development of Industry 4.0 predictive maintenance architecture for broadcasting chain. Advanced Engineering Informatics, 1-11. https://doi.org/10.1016/j.aei.2021.101324 | es_ES |
dc.description.references | Singh, D., Jain, N., Jain, P., & Kayal, P. (2019). PlantDoc: A Dataset for Visual Plant Disease Detection. arXivLabs, 1-5. https://doi.org/10.1145/3371158.3371196 | es_ES |
dc.description.references | Software Engineering Institute. (04 de May de 2018). Attribute-Driven Design - Create software architectures using architecturally significant requirements. Obtenido de Software Engineering Institute at Carnegie Mellon University: https://resources.sei.cmu.edu/asset_files/FactSheet/2018_010_001_513930.pdf | es_ES |
dc.description.references | Sony, M., Antony, J., Mc Dermott, O., & Garza-Reyes, J. (2021). An empirical examination of benefits, challenges, and critical success factors of industry 4.0 in manufacturing and service sector. Technology in Society, 1-12. https://doi.org/10.1016/j.techsoc.2021.101754 | es_ES |
dc.description.references | Tao, F., Qi, Q., Wang, L., & Nee, A. (2019). Digital Twins and Cyber-Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering, 653-661. https://doi.org/10.1016/j.eng.2019.01.014 | es_ES |
dc.description.references | The Apache Software Foundation. (2020). Apache Avro. Obtenido de Apache Avro: https://avro.apache.org/ | es_ES |
dc.description.references | Tian, W., & Zhao, Y. (2015). Optimized Cloud Resource Management and Scheduling. Morgan Kaufmann. :https://doi.org/10.1016/C2013-0-13415-0 | es_ES |
dc.description.references | Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of Manufacturing Systems, 93-106. https://doi.org/10.1016/j.jmsy.2018.04.007 | es_ES |
dc.description.references | Wang, X., Ong, S., & Nee, A. (2017). A comprehensive survey of ubiquitous manufacturing research. International Journal of Production Research, 604-628. https://doi.org/10.1080/00207543.2017.1413259 | es_ES |
dc.description.references | Wankhede, V. A., & Vinodh, S. (2021). Analysis of Industry 4.0 challenges using best worst method: A case study. Computers & Industrial Engineering, 1-13. https://doi.org/10.1016/j.cie.2021.107487 | es_ES |
dc.description.references | Wiesner, S., & Thoben, K.-D. (2016). Requirements for models, methods and tools supporting servitisation of products in manufacturing service ecosystems. International Journal of Computer Integrated Manufacturing, 1-12. https://doi.org/10.1080/0951192X.2015.1130243 | es_ES |
dc.description.references | Xu, L. D., & Duan, L. (2018). Big data for cyber physical systems in industry 4.0: a survey. Enterprise Information Systems, 1-23. https://doi.org/10.1080/17517575.2018.1442934 | es_ES |
dc.description.references | Xu, L., Xu, E., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56, 2941-2962. https://doi.org/10.1080/00207543.2018.1444806 | es_ES |
dc.description.references | Yang, H., Kumara, S., Bukkapatnam, S., & Tsung, F. (2019). The Internet of Things for Smart Manufacturing: A Review. IISE Transactions, 1-36. https://doi.org/10.1080/24725854.2018.1555383 | es_ES |
dc.description.references | Zhong, R., Xu, X., Klotz, E., & Newman, S. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 616-630. https://doi.org/10.1016/J.ENG.2017.05.015 | es_ES |