- -

Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belman-López, Carlos E. es_ES
dc.contributor.author Jiménez-García, José A. es_ES
dc.contributor.author Vázquez-Lopez, José A. es_ES
dc.contributor.author Camarillo-Gómez, Karla A. es_ES
dc.date.accessioned 2023-04-18T12:05:22Z
dc.date.available 2023-04-18T12:05:22Z
dc.date.issued 2023-03-31
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/192797
dc.description.abstract [EN] Industry 4.0 has become a priority and object of study for companies and research centers, although it is still in its early stages of implementation. In addition, companies face difficulties in developing solutions for Industry 4.0, without being sure how to address its essential requirements. A reference architecture explicitly addresses this problem, supports professionals in implementing solutions, being the basis of development, and providing support to face the challenges that Industry 4.0 represents. Therefore, the contribution of this document focuses on designing a reference architecture for systems and applications in Industry 4.0 based on cloud computing and data analysis, demonstrating its applicability through the implementation of a use case. Through this architecture, engineers and researchers will face the current challenges of smart production, in addition to researching, developing, and implementing guided, standardized solutions (applications and systems) at affordable costs that meet the requirements that govern Industry 4.0. es_ES
dc.description.abstract [ES] El término Industria 4.0 se ha convertido en prioridad y objeto de estudio para empresas y centros de investigación pero aún se encuentra dentro de sus primeras etapas de implementación. Además, las compañías enfrentan dificultades al desarrollar soluciones para Industria 4.0, sin estar seguras de cómo afrontar sus requerimientos básicos. El diseño de una arquitectura de referencia aborda explícitamente este problema, apoya a los profesionales en la implementación de soluciones siendo la base del desarrollo y proporciona un soporte ante los desafíos que la Industria 4.0 representa. Por lo tanto, la contribución de este documento se centra en diseñar una arquitectura de referencia para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos, mostrando su viabilidad a través de la implementación en un caso de uso: Agricultura 4.0. Mediante esta arquitectura, ingenieros e investigadores podrán enfrentar los desafíos actuales de la producción inteligente, así como investigar, desarrollar e implementar soluciones (aplicaciones y sistemas) guiadas, estandarizadas y a costos accesibles, que cumplan los requerimientos que gobiernan Industria 4.0. es_ES
dc.description.sponsorship Los autores agradecen al Consejo Nacional de Ciencia y Tecnología de México (CONACYT) por financiar esta investigación mediante una beca para estudios de posgrado (CVU 773443), al TecNM por el apoyo recibido a través de la convocatoria "Proyectos de Desarrollo Tecnológico e Innovación 2022" y al Dr. José Enrique Botello Álvarez por sus valiosas observaciones en el desarrollo de esta investigación. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Industry 4.0 es_ES
dc.subject System architecture es_ES
dc.subject Cloud computing es_ES
dc.subject Data analysis es_ES
dc.subject Applications development es_ES
dc.subject Industria 4.0 es_ES
dc.subject Arquitectura de sistemas es_ES
dc.subject Computación en la nube es_ES
dc.subject Análisis de datos es_ES
dc.subject Desarrollo de aplicaciones es_ES
dc.title Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos es_ES
dc.title.alternative Design of an architecture for systems and applications in Industry 4.0 based on cloud computing and data analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.17791
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//CVU 773443 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Belman-López, CE.; Jiménez-García, JA.; Vázquez-Lopez, JA.; Camarillo-Gómez, KA. (2023). Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos. Revista Iberoamericana de Automática e Informática industrial. 20(2):137-149. https://doi.org/10.4995/riai.2022.17791 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.17791 es_ES
dc.description.upvformatpinicio 137 es_ES
dc.description.upvformatpfin 149 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\17791 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Tecnológico Nacional de México es_ES
dc.description.references Aheleroff, S., Xu, X., Zhong, R., & Lu, Y. (2021). Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Advanced Engineering Informatics, 1-15. https://doi.org/10.1016/j.aei.2020.101225 es_ES
dc.description.references Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 16-21. https://doi.org/10.24840/2183-0606_003.004_0003 es_ES
dc.description.references Amazon Web Services. (2022). Infrastructura Global. Obtenido de AWS: https://aws.amazon.com/es/about-aws/global-infrastructure/ es_ES
dc.description.references Angulo, P., Guzmán, C., Jiménez, G., & Romero, D. (2016). A service-oriented architecture and its ICT infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. International Journal of Computer Integrated Manufacturing, 202-214. https://doi.org/10.1080/0951192X.2016.1145810 es_ES
dc.description.references AWS. (2022). Regiones y zonas de disponibilidad. Obtenido de AWS: https://aws.amazon.com/es/about-aws/global-infrastructure/regions_az/ es_ES
dc.description.references Azeem, M., Haleem, A., Shashi, B., Javaid, M., Suman, R., & Nandan, D. (2021). Big data applications to take up major challenges across manufacturing industries: A brief review. Materials Today: Proceedings, 1-10. https://doi.org/10.1016/j.matpr.2021.02.147 es_ES
dc.description.references Bader, S., Berres, B., Boss, B., Gatterburg, A., & Hoffmeister, M. (Noviembre de 2021). Plattform Industrie 4.0. Obtenido de Details of the Asset Administration Shell - Interoperability at Runtime - Part 2: Exchanging Information via Application Programming Interfaces: https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html es_ES
dc.description.references Bauer, J. (24 de Feb de 2021). Using container images to run TensorFlow models in AWS Lambda. Obtenido de AWS: https://aws.amazon.com/es/blogs/machine-learning/using-container-images-to-run-tensorflow-models-in-aws-lambda/ es_ES
dc.description.references Belman-Lopez, C., Jiménez-García, J., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 432-447. https://doi.org/10.4995/riai.2020.12579 es_ES
dc.description.references Belman-López, C., Jiménez-García, J., Vázquez-López, J., Hernández-González, S., & Franco-Barrón, J. (2020). Elementos fundamentales del sistema de manufactura inteligente en la era de Industria 4.0. Revista Internacional de Investigación e Innovación Tecnológica, 1-26. es_ES
dc.description.references Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis services. International Journal of Computer Integrated Manufacturing, 31(7), 612-623. https://doi.org/10.1080/0951192X.2018.1425552 es_ES
dc.description.references Carnell, J. (2017). Spring Microservices in Action. NY: Manning Publications Co. es_ES
dc.description.references Cervantes Maceda, H., Velasco-Elizondo, P., & Castro Careaga, L. (2016). Arquitectura de Software. Conceptos y ciclo de desarrollo. Ciudad de México, México: CENGAGE Learning. es_ES
dc.description.references Charro, A., & Schaefer, D. (2018). Cloud Manufacturing as a new type of Product-Service System. International Journal of Computer Integrated Manufacturing, 1018-1033. https://doi.org/10.1080/0951192X.2018.1493228 es_ES
dc.description.references Chen, T., & Tsai, H.-R. (2016). Ubiquitous manufacturing: Current practices, challenges, and opportunities. Robotics and Computer-Integrated Manufacturing, 1-7. http://dx.doi.org/10.1016/j.rcim.2016.01.001 es_ES
dc.description.references Dintén, R., López Martínez, P., & Zorrilla, M. (2021). Arquitectura de referencia para el diseño y desarrollo de aplicaciones para la Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 300-311. https://doi.org/10.4995/riai.2021.14532 es_ES
dc.description.references Docker. (2021). Obtenido de Docker: https://www.docker.com/ es_ES
dc.description.references Francalanza, E., Borg, J., & Constantinescu, C. (2018). Approaches for handling wicked manufacturing system design problems. Procedia CIRP, 67, 134-139. https://doi.org/10.1016/j.procir.2017.12.189 es_ES
dc.description.references GE. (01 de Noviembre de 2018). Predix Platform | GE Digital. Obtenido de GE: https://www.ge.com/digital/iiot-platform es_ES
dc.description.references Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for developing smart warehouses in Industry 4.0. Computers in Industry, 1-21. https://doi.org/10.1016/j.compind.2020.103343 es_ES
dc.description.references Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic road0toward Industry 4.0. Journal of Manufacturing Technology Management, 910-936. https://doi.org/10.1108/JMTM-02-2018-0057 es_ES
dc.description.references Google Cloud. (2018). Web API Design: The Missing Link. Google LLC. es_ES
dc.description.references Gorton, I., & Klein, J. (2015). Distribution, Data, Deployment, Software Architecture Convergence in Big Data Systems. IEEE COMPUTER SOCIETY, 78-85. https://doi.org/10.1109/MS.2014.51 es_ES
dc.description.references Groover, M. (2001). Automation, Production Systems, and Computer-Integrated Manufacturing. USA: Prentice Hall. es_ES
dc.description.references Hermann, M., Otto, B., & Pentek, T. (2015). Design Principles for Industrie 4.0 Scenarios: A Literature Review. ResearchGate, 1-16. https://doi.org/10.1109/HICSS.2016.488 es_ES
dc.description.references Hohpe, G., & Woolf, B. (2004). Enterprise Integration Patterns. Boston, MA: Addison-Wesley. es_ES
dc.description.references Huang , M.-L., & Chuang, T. (2020). A database of eight common tomato pest images. Mendeley Data, V1. doi:10.17632/s62zm6djd2.1 es_ES
dc.description.references ISA. (Octubre de 2019). Automation IT: RAMI 4.0 Reference Architectural Model for Industrie 4.0. Obtenido de International Society of Automation (ISA): https://www.isa.org/intech/20190405/ es_ES
dc.description.references ISO/IEC/IEEE 42010. (10 de Jul de 2007). ISO/IEC/IEEE 42010: Defining "architecture". Obtenido de ISO/IEC/IEEE 42010: http://www.iso-architecture.org/ieee-1471/defining-architecture.html es_ES
dc.description.references Jocher, G., Stoken, A., Chaurasia, A., Borovec, J., NanoCode012, TaoXie, . . . AlexWang1900. (2021). ultralytics/yolov5: v6.0. Zenodo. https://doi.org/10.5281/zenodo.5563715 es_ES
dc.description.references Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 36-52. https://doi.org/10.1016/j.cirpj.2020.02.002 es_ES
dc.description.references Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. National Academy of Science and Engineering (acatech)., 1-82. https://doi.org/10.3390/sci4030026 es_ES
dc.description.references Kakani, V., Nguyen, V., Kumar, B., Kim, H., & Pasupuleti, V. (2020). A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 1-12. https://doi.org/10.1016/j.jafr.2020.100033 es_ES
dc.description.references Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 1-13. https://doi.org/10.1016/j.eswa.2022.116912 es_ES
dc.description.references Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 508-517. https://doi.org/10.1080/00207543.2017.1351644 es_ES
dc.description.references Lee, J., Ardakani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP, 3-7. https://doi.org/10.1016/j.procir.2015.08.026 es_ES
dc.description.references Lie, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 1-18. https://doi.org/10.1186/s13007-021-00722-9 es_ES
dc.description.references Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019). A Cyber-Physical Machine Tools Platform using OPC UA and MTConnect. Journal of Manufacturing Systems, 1-14. https://doi.org/10.1016/j.jmsy.2019.04.006 es_ES
dc.description.references Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on Cyber-physical Systems. Journal of Automatica Sinica, 27-40. https://doi.org/10.1109/JAS.2017.7510349 es_ES
dc.description.references Liu, Z., Sampaio, P., Pishchulov, G., Mehandjiev, N., Cisneros-Cabrera, S., Schirrmann, A., . . . Bnouhanna, N. (2022). The architectural design and implementation of a digital platform for Industry 4.0 SME collaboration. Computers in Industry, 1-12. https://doi.org/10.1016/j.compind.2022.103623 es_ES
dc.description.references López Martínez, P., Dintén, R., Drake, J., & Zorrilla, M. (2021). A big data-centric architecture metamodel for Industry 4.0. Future Generation Computer Systems, 263-284. https://doi.org/10.1016/j.future.2021.06.020 es_ES
dc.description.references Lu, Y., Liu, C., Wang, K.-K., Huang, H., & Xu, X. (2019). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer Integrated Manufacturing, 1-14. https://doi.org/10.1016/j.rcim.2019.101837 es_ES
dc.description.references Macías, A., Navarro, E., & González, P. (2019). A Microservice-Based Framework for Developing Internet of Things and People Applications. Proceedings, 1-13. https://doi.org/10.3390/proceedings2019031085 es_ES
dc.description.references Malathi, V., & Gopinath, M. (2021). Classification of pest detection in paddy crop based on transfer learning approach. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science. https://doi.org/10.1080/09064710.2021.1874045 es_ES
dc.description.references Miny, T., Stephan, G., Usländer, T., & Vialkowitsch, J. (Abril de 2021). Plattform Industrie 4.0. Obtenido de Functional View of the Asset Administration Shell in an Industrie 4.0 System Environment: https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html es_ES
dc.description.references Mishra, A. (2019). Machine Learning in the AWS Cloud. Indianapolis, Indiana: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119556749 es_ES
dc.description.references Nakagawa, E. Y., Antonino, P. O., Schnicke, F., Capilla, R., Kuhn, T., & Liggesmeyer, P. (2021). Industry 4.0 reference architectures: State of the art and future trends. Computers & Industrial Engineering, 1-13. https://doi.org/10.1016/j.cie.2021.107241 es_ES
dc.description.references Niknejad, N., Ismail, W., Ghani, I., Nazari, B., Bahari, M., & Hussin, A. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 1-27. https://doi.org/10.1016/j.is.2020.101491 es_ES
dc.description.references NIST. (16 de Abril de 2018). Framework for Improving Critical Infrastructure Cybersecurity. Obtenido de National Institute of Standards and Technology: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf es_ES
dc.description.references Pallathadka, H., Sajja, G., Phasinam, K., Ritonga, M., Naved, M., Bansal, R., & Quiñonez-Choquecota, J. (2021). An investigation of various applications and related challenges in cloud computing. Materials Today: Proceedings, 1-5. https://doi.org/10.1016/j.matpr.2021.11.383 es_ES
dc.description.references Pereira, A., & Romero, F. (2017). A review of the meaning and the implications of the Industry 4.0 concept. En P. Manufacturing (Ed.), Manufacturing Engineering Society International Conference (págs. 1206-1214). Vigo, España: Elsevier. https://doi.org/10.1016/j.promfg.2017.09.032 es_ES
dc.description.references Poccia, D. (2016). AWS Lambda in Action. Manning. es_ES
dc.description.references PwC Middle East. (23 de 10 de 2018). Big investments with big impacts and rapid returns. Obtenido de PwC Middle East : https://www.pwc.com/m1/en/publications/industry-40-survey/big-investments.html es_ES
dc.description.references Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., . . . Nee, A. (2019). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 1-19. https://doi.org/10.1016/j.jmsy.2019.10.001 es_ES
dc.description.references R, S., & R, S. (2017). Data Mining with Big Data. Intelligent Systems and Control (ISCO) (págs. 246-250). Coimbatore, India: IEEE. doi: 10.1109/ISCO.2017.7855990 es_ES
dc.description.references RedHat. (2021). ¿Que es una api rest? Obtenido de RedHat: https://www.redhat.com/es/topics/api/what-is-a-rest-api#rest es_ES
dc.description.references Richards, M. (2015). Software Arquitecture Patterns. Gravenstein Highway North, Sebastopol, CA: O'Reilly Media, Inc. es_ES
dc.description.references Rosen, D. (2019). Thoughts on Design for Intelligent Manufacturing. Engineering, 1-6. https://doi.org/10.1016/j.eng.2019.07.011 es_ES
dc.description.references Sahba, R., Radfar, R., Ghatari, A. R., & Ebrahimi, A. P. (2021). Development of Industry 4.0 predictive maintenance architecture for broadcasting chain. Advanced Engineering Informatics, 1-11. https://doi.org/10.1016/j.aei.2021.101324 es_ES
dc.description.references Singh, D., Jain, N., Jain, P., & Kayal, P. (2019). PlantDoc: A Dataset for Visual Plant Disease Detection. arXivLabs, 1-5. https://doi.org/10.1145/3371158.3371196 es_ES
dc.description.references Software Engineering Institute. (04 de May de 2018). Attribute-Driven Design - Create software architectures using architecturally significant requirements. Obtenido de Software Engineering Institute at Carnegie Mellon University: https://resources.sei.cmu.edu/asset_files/FactSheet/2018_010_001_513930.pdf es_ES
dc.description.references Sony, M., Antony, J., Mc Dermott, O., & Garza-Reyes, J. (2021). An empirical examination of benefits, challenges, and critical success factors of industry 4.0 in manufacturing and service sector. Technology in Society, 1-12. https://doi.org/10.1016/j.techsoc.2021.101754 es_ES
dc.description.references Tao, F., Qi, Q., Wang, L., & Nee, A. (2019). Digital Twins and Cyber-Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering, 653-661. https://doi.org/10.1016/j.eng.2019.01.014 es_ES
dc.description.references The Apache Software Foundation. (2020). Apache Avro. Obtenido de Apache Avro: https://avro.apache.org/ es_ES
dc.description.references Tian, W., & Zhao, Y. (2015). Optimized Cloud Resource Management and Scheduling. Morgan Kaufmann. :https://doi.org/10.1016/C2013-0-13415-0 es_ES
dc.description.references Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of Manufacturing Systems, 93-106. https://doi.org/10.1016/j.jmsy.2018.04.007 es_ES
dc.description.references Wang, X., Ong, S., & Nee, A. (2017). A comprehensive survey of ubiquitous manufacturing research. International Journal of Production Research, 604-628. https://doi.org/10.1080/00207543.2017.1413259 es_ES
dc.description.references Wankhede, V. A., & Vinodh, S. (2021). Analysis of Industry 4.0 challenges using best worst method: A case study. Computers & Industrial Engineering, 1-13. https://doi.org/10.1016/j.cie.2021.107487 es_ES
dc.description.references Wiesner, S., & Thoben, K.-D. (2016). Requirements for models, methods and tools supporting servitisation of products in manufacturing service ecosystems. International Journal of Computer Integrated Manufacturing, 1-12. https://doi.org/10.1080/0951192X.2015.1130243 es_ES
dc.description.references Xu, L. D., & Duan, L. (2018). Big data for cyber physical systems in industry 4.0: a survey. Enterprise Information Systems, 1-23. https://doi.org/10.1080/17517575.2018.1442934 es_ES
dc.description.references Xu, L., Xu, E., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56, 2941-2962. https://doi.org/10.1080/00207543.2018.1444806 es_ES
dc.description.references Yang, H., Kumara, S., Bukkapatnam, S., & Tsung, F. (2019). The Internet of Things for Smart Manufacturing: A Review. IISE Transactions, 1-36. https://doi.org/10.1080/24725854.2018.1555383 es_ES
dc.description.references Zhong, R., Xu, X., Klotz, E., & Newman, S. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 616-630. https://doi.org/10.1016/J.ENG.2017.05.015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem