Mostrar el registro sencillo del ítem
dc.contributor.author | Liu, Ran | es_ES |
dc.contributor.author | Guzmán, José Luis | es_ES |
dc.contributor.author | García-Mañas, Francisco | es_ES |
dc.contributor.author | Li, Ming | es_ES |
dc.date.accessioned | 2023-04-18T12:11:32Z | |
dc.date.available | 2023-04-18T12:11:32Z | |
dc.date.issued | 2023-03-31 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/192798 | |
dc.description.abstract | [EN] This paper introduces an application of a selective temperature and humidity control scheme for chinese solar greenhouses, which are the most widely used in the northern provinces of China. Firstly, a PI controller for temperature is studied with an eventbased approach. After the evaluation of different event-generator thresholds, an optimum value is selected which significantly reduces the number of vent movements by 43.8%, while only increasing the temperature error by 1.13%. Secondly, a controller for relative humidity and another controller for absolute humidity were implemented. The results show that the controller for relative humidity performs adequately when the set-point is not high. However, the control action is deteriorated when the set-point is over 70%. The absolute humidity control allows to regulate the humidity for references of any value, but with less control precision. Finally, through a simulation study, the effectiveness is demonstrated for a selective temperature control strategy with a humidity priority control scheme. This control strategy keeps the relative humidity below 80% while controlling the temperature to the set-point, preventing high humidity from damaging the crop. | es_ES |
dc.description.abstract | [ES] Este artículo presenta la aplicación de un esquema de control selectivo de temperatura y humedad para invernaderos solares chinos, que son los más utilizados en las provincias del norte de China. En primer lugar, para controlar la temperatura, se propone un controlador PI con un enfoque basado en eventos. Tras la evaluación de varios valores de la banda de ocurrencia de eventos, se obtiene una solución que permite reducir en un 43,8%el número de aperturas y cierres de las ventanas del invernadero, mientras que el error de temperatura se incrementa sólo en un 1,13 %. En segundo lugar, se ha diseñado un controlador para la humedad relativa y otro para la humedad absoluta. Los resultados muestran que el control de humedad relativa funciona adecuadamente cuando la consigna no es demasiado elevada. Sin embargo, la acción de control se deteriora cuando la consigna es superior al 70 %. En comparación, el control de humedad absoluta permite regular la humedad para referencias de cualquier valor, pero la precisión de control es menor. Finalmente, mediante un estudio en simulación, se demuestra la efectividad de la estrategia de control selectivo de temperatura con un esquema que da prioridad para controlar la humedad cuando ésta alcanza límites no deseados. Esta estrategia de control consigue mantener la humedad relativa por debajo del 80% mientras que controla la temperatura en la consigna establecida, evitando así que la alta humedad dañe al cultivo. | es_ES |
dc.description.sponsorship | El autor Liu Ran agradece el apoyo económico brindado por el Consejo de Becas de China (China Scholarship Council, nº. 201909505002). El autor Francisco García-Mañas es beneficiario de una ayuda FPU del Ministerio de Ciencia, Innovación y Universidades. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Selective control | es_ES |
dc.subject | PI control | es_ES |
dc.subject | Event-based control | es_ES |
dc.subject | Agriculture | es_ES |
dc.subject | Greenhouses | es_ES |
dc.subject | Control selectivo | es_ES |
dc.subject | Control PI | es_ES |
dc.subject | Control basado en eventos | es_ES |
dc.subject | Agricultura | es_ES |
dc.subject | Invernaderos | es_ES |
dc.title | Estrategia de control selectivo de temperatura y humedad para un invernadero solar chino con un enfoque basado en eventos | es_ES |
dc.title.alternative | Selective temperature and humidity control strategy for a chinese solar greenhouse with an event-based approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.18119 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CSC//201909505002 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Liu, R.; Guzmán, JL.; García-Mañas, F.; Li, M. (2023). Estrategia de control selectivo de temperatura y humedad para un invernadero solar chino con un enfoque basado en eventos. Revista Iberoamericana de Automática e Informática industrial. 20(2):150-161. https://doi.org/10.4995/riai.2022.18119 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.18119 | es_ES |
dc.description.upvformatpinicio | 150 | es_ES |
dc.description.upvformatpfin | 161 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\18119 | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.description.references | Åström, K. J., Hägglund, T., 2005. Advanced PID Control. ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC 27709. | es_ES |
dc.description.references | Beschi, M., Dormido, S., Sanchez, J., Visioli, A., 2013. Stability analysis of symmetric send-on-delta event-based control systems. In: 2013 American Control Conference. pp. 1771-1776. https://doi.org/10.1109/ACC.2013.6580092 | es_ES |
dc.description.references | Beschi, M., Pawlowski, A., Guzmán, J. L., Berenguel, M., Visioli, A., 2014. Symmetric send-on-delta PI control of a greenhouse system. IFAC Proceedings Volumes 47 (3), 4411-4416. https://doi.org/10.3182/20140824-6-ZA-1003.01028 | es_ES |
dc.description.references | Dormido, S., Sánchez, J., Kofman, E., 2008. Muestreo, control y comunicación basados en eventos. Revista Iberoamericana de Automática e Informática industrial 5 (1), 5-26. https://doi.org/10.1016/S1697-7912(08)70120-1 | es_ES |
dc.description.references | García-Mañas, F., Guzmán, J. L., Rodríguez, F., Berenguel, M., Hägglund, T., 2021. Experimental evaluation of feedforward tuning rules. Control Engineering Practice 114, 104877. https://doi.org/10.1016/j.conengprac.2021.104877 | es_ES |
dc.description.references | Guo, Y., Zhao, H., Zhang, S., Wang, Y., Chow, D., 2021. Modeling and optimization of environment in agricultural greenhouses for improving cleaner and sustainable crop production. Journal of Cleaner Production 285, 124843. https://doi.org/10.1016/j.jclepro.2020.124843 | es_ES |
dc.description.references | Körner, O., Challa, H., 2003. Process-based humidity control regime for greenhouse crops. Computers and Electronics in Agriculture 39 (3), 173-192. https://doi.org/10.1016/S0168-1699(03)00079-6 | es_ES |
dc.description.references | Li, J., Li, L., Wang, H., Ferentinos, K. P., Li, M., Sigrimis, N., 2017. Proactive energy management of solar greenhouses with risk assessment to enhance smart specialisation in China. Biosystems Engineering 158, 10-22. https://doi.org/10.1016/j.biosystemseng.2017.03.007 | es_ES |
dc.description.references | Liu, R., Li, M., Guzmán, J. L., Rodríguez, F., 2021. A fast and practical one-dimensional transient model for greenhouse temperature and humidity. Computers and Electronics in Agriculture 186, 106186. https://doi.org/10.1016/j.compag.2021.106186 | es_ES |
dc.description.references | Liu, R., Wang, H., Guzmán, J. L., Li, M., 2022. A model-based methodology for the early warning detection of cucumber downy mildew in greenhouses: An experimental evaluation. Computers and Electronics in Agriculture 194, 106751. https://doi.org/10.1016/j.compag.2022.106751 | es_ES |
dc.description.references | Montoya-Ríos, A. P., García-Mañas, F., Guzmán, J. L., Rodríguez, F., 2020. Simple tuning rules for feedforward compensators applied to greenhouse daytime temperature control using natural ventilation. Agronomy 10 (9), 1327. https://doi.org/10.3390/agronomy10091327 | es_ES |
dc.description.references | Pawlowski, A., Beschi, M., Guzmán, J. L., Visioli, A., Berenguel, M., Dormido, S., 2016. Application of SSOD-PI and PI-SSOD event-based controllers to greenhouse climatic control. ISA Transactions 65, 525-536. https://doi.org/10.1016/j.isatra.2016.08.008 | es_ES |
dc.description.references | Rodríguez, F., Guzmán, J. L., Berenguel, M., Arahal, M. R., 2008. Adaptive hierarchical control of greenhouse crop production. International Journal of Adaptive Control and Signal Processing 22 (2), 180-197. https://doi.org/10.1002/acs.974 | es_ES |
dc.description.references | Smit, J N & Combrink, N. J. J., 2005. Pollination and yield of winter-grown greenhouse tomatoes as affected by boron nutrition, cluster vibration and relative humidity. South African Journal of Plant and Soil 22 (2), 110-115. https://doi.org/10.1080/02571862.2005.10634691 | es_ES |
dc.description.references | Wang, L., Zhang, H., 2018. An adaptive fuzzy hierarchical control for maintaining solar greenhouse temperature. Computers and Electronics in Agriculture 155, 251-256. https://doi.org/10.1016/j.compag.2018.10.023 | es_ES |
dc.description.references | Wang, T.,Wu, G., Chen, J., Cui, P., Chen, Z., Yan, Y., Zhang, Y., Li, M., Niu, D., Li, B., Chen, H., 2017. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renewable and Sustainable Energy Reviews 70, 1178-1188. https://doi.org/10.1016/j.rser.2016.12.020 | es_ES |
dc.description.references | Xu, D., Du, S., van Willigenburg, G., 2018a. Adaptive two time-scale receding horizon optimal control for greenhouse lettuce cultivation. Computers and Electronics in Agriculture 146, 93-103. https://doi.org/10.1016/j.compag.2018.02.001 | es_ES |
dc.description.references | Xu, D., Du, S., van Willigenburg, L. G., 2018b. Optimal control of chinese solar greenhouse cultivation. Biosystems Engineering 171, 205-219. https://doi.org/10.1016/j.biosystemseng.2018.05.002 | es_ES |