- -

Manipulación visual-táctil para la recogida de residuos domésticos en exteriores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manipulación visual-táctil para la recogida de residuos domésticos en exteriores

Mostrar el registro completo del ítem

Castaño-Amorós, J.; Páez-Ubieta, IDL.; Gil, P.; Puente, ST. (2023). Manipulación visual-táctil para la recogida de residuos domésticos en exteriores. Revista Iberoamericana de Automática e Informática industrial. 20(2):163-174. https://doi.org/10.4995/riai.2022.18534

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192800

Ficheros en el ítem

Metadatos del ítem

Título: Manipulación visual-táctil para la recogida de residuos domésticos en exteriores
Otro titulo: Visual-tactile manipulation to collect household waste in outdoor
Autor: Castaño-Amorós, Julio Páez-Ubieta, Ignacio de Loyola Gil, Pablo Puente, Santiago Timoteo
Fecha difusión:
Resumen:
[EN] This work presents a perception system applied to robotic manipulation, that is able to assist in navegation, household waste classification and collection in outdoor environments. This system is made up of optical ...[+]


[ES] Este artículo presenta un sistema de percepcion orientado a la manipulación robótica, capaz de asistir en tareas de navegación, clasificacion y recogida de residuos domésticos en exterior. El sistema está compuesto ...[+]
Palabras clave: Visual detection , Object recognition , Object location , Tactile perception , Robotic manipulation , Detección visual , Reconocimiento de objetos , Localización de objetos , Percepción táctil , Manipulación robótica
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.18534
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.18534
Código del Proyecto:
info:eu-repo/grantAgreement/GV//PROMETEO%2F2021%2F075
info:eu-repo/grantAgreement/GV//IDIFEDER%2F2020%2F003
Agradecimientos:
Este trabajo ha sido financiado con Fondos Europeos de Desarrollo Regional (FEDER), el gobierno de la Generalitat Valenciana a través del proyecto PROMETEO/2021/075, y los recursos computaciones fueron financiados a traves ...[+]
Tipo: Artículo

References

Altikat, A., Gulbe, A., Altikat, S., 2022. Intelligent solid waste classification using deep convolutional neural networks. Int. J. Environmental Science and Technology 19, 1285-1292. https://doi.org/10.1007/s13762-021-03179-4

Bircanoglu, C., Atay, M.and Beser, F., Genc¸, , Kızrak, M. A., 2018. Recyclenet: Intelligent waste sorting using deep neural networks. In: Innovations in intelligent systems and applications. pp. 1-7. https://doi.org/10.1109/INISTA.2018.8466276

Bohg, J., Morales, A., Asfour, T., Kragic, D., 2013. Data-driven grasp synthesis- a survey. IEEE Transactions on robotics 30 (2), 289-309. https://doi.org/10.1109/TRO.2013.2289018 [+]
Altikat, A., Gulbe, A., Altikat, S., 2022. Intelligent solid waste classification using deep convolutional neural networks. Int. J. Environmental Science and Technology 19, 1285-1292. https://doi.org/10.1007/s13762-021-03179-4

Bircanoglu, C., Atay, M.and Beser, F., Genc¸, , Kızrak, M. A., 2018. Recyclenet: Intelligent waste sorting using deep neural networks. In: Innovations in intelligent systems and applications. pp. 1-7. https://doi.org/10.1109/INISTA.2018.8466276

Bohg, J., Morales, A., Asfour, T., Kragic, D., 2013. Data-driven grasp synthesis- a survey. IEEE Transactions on robotics 30 (2), 289-309. https://doi.org/10.1109/TRO.2013.2289018

Bolya, D., Zhou, C., Xiao, F., Lee, Y., 2019. Yolact: Real-time instance segmentation. In: IEEE/CVF Int. Conf. on Computer Vision. pp. 9157-9166. https://doi.org/10.1109/ICCV.2019.00925

Castaño-Amoros, J., Gil, P., Puente, S., 2021. Touch detection with low-cost visual-based sensor. In: 2nd Int. Conf. on Robotics, Computer Vision and Intelligent Systems. pp. 136-142. https://doi.org/10.5220/0010699800003061

De Gea, V., Puente, S., Gil, P., 2021. Domestic waste detection and grasping points for robotic picking up. 10.48550/arXiv.2105.06825, iEEE Int. Conf. on Robotics and Automation. Workshop: Emerging paradigms for robotic manipulation: from the lab to the productive world.

Del Pino, I., Muñoz-Bañon, M., Cova-Rocamora, S., Contreras, M., Candelas, F., Torres, F., 2020. Deeper in blue. Journal of Intelligent & Robotics Systems 98, 207-225. https://doi.org/10.1007/s10846-019-00983-6

Donlon, E., Dong, S., Liu, M., Li, J., Adelson, E., Rodriguez, A., 2018. Gelslim: A high-resolution, compact, robust, and calibrated tactile-sensing finger. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1927-1934. https://doi.org/10.1109/IROS.2018.8593661

Feng, J., Tang, X., Jiang, X., Chen, Q., 2021. Garbage disposal of complex background based on deep learning with limited hardware resources. IEEE Sensors Journal 21(8), 21050-21058. https://doi.org/10.1109/JSEN.2021.3100636

Fu, B., Li, S., Wei, J., Li, Q., Wang, Q., T. J., 2021. A novel intelligent garbage classification system based on deep learning and an embedded linux system. IEEE Access 9), 131134-131146. https://doi.org/10.1109/ACCESS.2021.3114496

Guo, N., Zhang, B., Zhou, J., Zhan, K., Lai, S., 2020. Pose estimation and adaptable grasp configuration with point cloud registration and geometry understanding for fruit grasp planning. Computers and Electronics in Agriculture 179, 105818. https://doi.org/10.1016/j.compag.2020.105818

He, K., Zhang, X., Ren, S., Sun, J., 2021. Deep residual learning for image recognition. In: IEEE Conf. on Computer Vision And Pattern Recognition. https://doi.org/10.1109/CVPR.2016.90

Jiang, D., Li, G., Sun, Y., Hu, J., Yun, J., Liu, Y., 2021. Manipulator grabbing position detection with information fusion of color image and depth image using deep learning. Journal of Ambient Intelligence and Humanized Computing 12 (12), 10809-10822. https://doi.org/10.1007/s12652-020-02843-w

Kim, D., Li, A., Lee, J., 2021. Stable robotic grasping of multiple objects using deep neural networks. Robotica 39 (4), 735-748. https://doi.org/10.1017/S0263574720000703

Kiyokawa, T., Katayama, H., Tatsuta, Y., Takamatsu, J., Ogasawara, T., 2021. Robotic waste sorter with agile manipulation and quickly trainable detector. IEEE Access 9), 124616-124631. https://doi.org/10.1109/ACCESS.2021.3110795

Kolamuri, R., Si, Z., Zhang, Y., Agarwal, A., Yuan, W., 2021. Improving grasp stability with rotation measurement from tactile sensing. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 6809-6816. https://doi.org/10.1109/IROS51168.2021.9636488

Lambeta, Chou, P.-W., Tian, S., Yang, B., Maloon, B., Most, V., Stroud, D., Santos, R., B.-A., Kammerer, G., Jayaraman, D., Calandra, R., 2020. Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robotics and Automation Letters 5(3), 3838-38451. https://doi.org/10.1109/LRA.2020.2977257

Lin, Y., Lloyd, J., Church, A., Lepora, N. F., 2022. Tactile gym 2.0: Sim-to-real deep reinforcement learning for comparing low-cost high-resolution robot touch. IEEE Robotics and Automation Letters 7 (4), 10754-10761. https://doi.org/10.1109/LRA.2022.3195195

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikainen, M., 2020. Deep learning for generic object detection: A survey. Int. J. of Computer Vision 128, 261--318. https://doi.org/10.1007/s11263-019-01247-4

Liu, Y., Jiang, D., Duan, H., Sun, Y., Li, G., Tao, B., Yun, J., Liu, Y., Chen, B., 2021. Dynamic gesture recognition algorithm based on 3d convolutional neural network. Computational Intelligence and Neuroscience 2021. https://doi.org/10.1155/2021/4828102

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D., 2020. Image segmentation using deep learning: A survey. IEEE Trans on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3059968

Newbury, R., Gu, M., Chumbley, L., Mousavian, A., Eppner, C., Leitner, J., Bohg, J., Morales, A., Asfour, T., Kragic, D., et al., 2022. Deep learning approaches to grasp synthesis: A review. arXiv preprint arXiv:2207.02556.

Patrizi, A., Gambosi, G., Zanzotto, F., 2021. Data augmentation using background replacement for automated sorting of littered waste. J. of Imaging 7(8), 144. https://doi.org/10.3390/jimaging7080144

Redmon, J., 2014. Darknet: Open source neural networks in c. http://pjreddie.com/darknet/.

Sahbani, A., El-Khoury, S., Bidaud, P., 2012. An overview of 3d object grasp synthesis algorithms. Robotics and Autonomous Systems 60 (3), 326-336. https://doi.org/10.1016/j.robot.2011.07.016

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: IEEE Conf. on Computer Vision and Pattern Recognition. pp. 4510-4520. https://doi.org/10.1109/CVPR.2018.00474

Sandykbayeva, D., Kappassov, Z., Orazbayev, B., 2022. Vibrotouch: Active tactile sensor for contact detection and force sensing via vibrations. Sensors 22 (17). https://doi.org/10.3390/s22176456

Shaw-Cortez, W., Oetomo, D., Manzie, C., Choong, P., 2018. Tactile-based blind grasping: A discrete-time object manipulation controller for robotic hands. IEEE Robotics and Automation Letters 3 (2), 1064-1071. https://doi.org/10.1109/LRA.2018.2794612

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. on Learning Representations. DOI: https://doi.org/10.48550/arXiv.1409.1556

Suárez, R., Palomo-Avellaneda, L., Martínez, J., Clos, D., García, N., 2020. Manipulador móvil, bibrazo y diestro con nuevas ruedas omnidireccionales. Revista Iberoamericana de Automática e Informática industrial 17 (1), 10-21. https://doi.org/10.4995/riai.2019.11422

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: IEEE Conf. on Computer Vision and Pattern Recognition. pp. 2818-2826. https://doi.org/10.1109/CVPR.2016.308

Velasco, E., Zapata-Impata, B. S., Gil, P., Torres, F., 2020. Clasificación de objetos usando percepción bimodal de palpación única en acciones de agarre robótico. Revista Iberoamericana de Automática e Informática Industrial 17 (1) , 44-55. https://doi.org/10.4995/riai.2019.10923

Vo, A. H., Son, L., Vo, M., Le, T., 2019. A novel framework for trash classification using deep transfer learning. IEEE Access 7, 178631-178639. https://doi.org/10.1109/ACCESS.2019.2959033

Ward-Cherrier, B., Pestell, N., Cramphorn, L., Winstone, B., Giannaccini, M. E., Rossiter, J., Lepora, N. F., 2018. The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft robotics 5 (2), 216-227. https://doi.org/10.1089/soro.2017.0052

Yao, T., Guo, X., Li, C., Qi, H., Lin, H., Liu, L., Dai, Y., Qu, L., Huang, Z., Liu, P., et al., 2020. Highly sensitive capacitive flexible 3d-force tactile sensors for robotic grasping and manipulation. Journal of Physics D: Applied Physics 53 (44), 445109. https://doi.org/10.1088/1361-6463/aba5c0

Yuan, W., Dong, S., Adelson, E. H., 2017. Gelsight: High-resolution robot tactile sensors for estimating geometry and force. Sensors 17 (12), 2762. https://doi.org/10.3390/s17122762

Zapata-Impata, B., Gil, P., Pomares, J., Torres, F., 2019a. Fast geometry-based computation of grasping points on three-dimensional point clouds. Int. J. of Advanced Robotic Systems, 1-18. https://doi.org/10.1177/1729881419831846

Zapata-Impata, B. S., Gil, P., Torres, F., 2019b. Learning spatio temporal tactile features with a convlstm for the direction of slip detection. Sensors 19 (3), 523. https://doi.org/10.3390/s19030523

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem