- -

Exploración dinámica de fronteras en entornos desconocidos basada en la entropía

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploración dinámica de fronteras en entornos desconocidos basada en la entropía

Mostrar el registro completo del ítem

Godoy-Calvo, J.; Lin-Yang, D.; Vázquez-Martín, R.; García-Cerezo, A. (2023). Exploración dinámica de fronteras en entornos desconocidos basada en la entropía. Revista Iberoamericana de Automática e Informática industrial. 20(2):213-223. https://doi.org/10.4995/riai.2023.18740

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192803

Ficheros en el ítem

Metadatos del ítem

Título: Exploración dinámica de fronteras en entornos desconocidos basada en la entropía
Otro titulo: Dynamic entropy-based method for exploring frontiers in unknown environments
Autor: Godoy-Calvo, Jaime Lin-Yang, Dahui Vázquez-Martín, Ricardo García-Cerezo, Alfonso
Fecha difusión:
Resumen:
[EN] Exploration in disaster areas provides valuable, high-fidelity information to rescue personnel in disaster situations, with the potential to reduce the time for search and recovery of victims. This paper presents an ...[+]


[ES] La exploración en entornos de catástrofes proporciona información valiosa de alta fidelidad al personal de los dispositivos de rescate ante situaciones de desastre, ofreciendo la posibilidad de reducir el tiempo de ...[+]
Palabras clave: Mobile robotics , Autonomous mobile robotics , Robot navigation , Entropy , Information theory , Robótica móvil , Robótica móvil autónoma , Navegación de robots , Entropía , Teoría de la información
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.18740
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.18740
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093421-B-I00/ES/HACIA EQUIPOS RESILIENTES DE MANIPULADORES UGV Y UAV PARA TAREAS ROBOTICAS DE BUSQUEDA Y RESCATE/
info:eu-repo/grantAgreement/AEI//PID2021-122944OB-I00
Agradecimientos:
Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, proyecto RTI2018-093421-B-I00 y PID2021-122944OB-I00.
Tipo: Artículo

References

Bai, S., Chen, F., Englot, B., 2017. Toward autonomous mapping and exploration for mobile robots through deep supervised learning. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). pp. 2379- 2384. https://doi.org/10.1109/IROS.2017.8206050

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J. J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics 32 (6), 1309-1332. https://doi.org/10.1109/TRO.2016.2624754

Chen, F., Wang, J., Shan, T., Englot, B., 2022. Autonomous exploration under uncertainty via graph convolutional networks. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (Eds.), Robotics Research. Springer International Publishing, Cham, pp. 676-691. https://doi.org/10.1007/978-3-030-95459-8_41 [+]
Bai, S., Chen, F., Englot, B., 2017. Toward autonomous mapping and exploration for mobile robots through deep supervised learning. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). pp. 2379- 2384. https://doi.org/10.1109/IROS.2017.8206050

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J. J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics 32 (6), 1309-1332. https://doi.org/10.1109/TRO.2016.2624754

Chen, F., Wang, J., Shan, T., Englot, B., 2022. Autonomous exploration under uncertainty via graph convolutional networks. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (Eds.), Robotics Research. Springer International Publishing, Cham, pp. 676-691. https://doi.org/10.1007/978-3-030-95459-8_41

Cieslewski, T., Kaufmann, E., Scaramuzza, D., 2017. Rapid exploration with multi-rotors: A frontier selection method for high speed flight. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). pp. 2135-2142. https://doi.org/10.1109/IROS.2017.8206030

da Silva Lubanco, D. L., Pichler-Scheder, M., Schlechter, T., Scherh¨aufl, M., Kastl, C., 2020. A review of utility and cost functions used in frontier-based exploration algorithms. In: 5th Int. Conf. on Robotics and Automation Engineering (ICRAE). pp. 187-191. https://doi.org/10.1109/ICRAE50850.2020.9310862

Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D., Leutenegger, S., 2020. Fast frontier-based information-driven autonomous exploration with an mav. In: IEEE International Conference on Robotics and Automation (ICRA). pp. 9570-9576. https://doi.org/10.1109/ICRA40945.2020.9196707

Delmerico, J., Mintchev, S., Giusti, A., Gromov, B., Melo, K., Horvat, T., Cadena, C., Hutter, M., Ijspeert, A., Floreano, D., Gambardella, L. M., Siegwart, R., Scaramuzza, D., 10 2019. The current state and future outlook of rescue robotics. Journal of Field Robotics 36, 1171-1191. https://doi.org/10.1002/rob.21887

Deng, D., Duan, R., Liu, J., Sheng, K., Shimada, K., 2020. Robotic exploration of unknown 2d environment using a frontier-based automatic-differentiable information gain measure. In: Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM). pp. 1497-1503. https://doi.org/10.1109/IROS.2017.8202319

Godoy-Calvo, J., Lin-Yang, D., V'azquez-Mart'ın, R., 2022. Dynamic entropy exploration repository. Accessed: Nov 7, 2022. URL: https://github.com/Jagoca98/DynamicEntropyExplore.git.

Hörner, J., 2016. Map-merging for multi-robot system. Master's thesis, Charles University in Prague, Faculty of Mathematics and Physics, Prague.

Kaufman, E., Lee, T., Ai, Z., 2016. Autonomous exploration by expected information gain from probabilistic occupancy grid mapping. In: Proc. of the Int. Conf. on Simulation, Modeling, and Programming for Autonomous Robots(SIMPAR). pp. 246-251. https://doi.org/10.1109/SIMPAR.2016.7862403

Li, H., Zhang, Q., Zhao, D., 2020. Deep reinforcement learning-based automatic exploration for navigation in unknown environment. IEEE Transactions on Neural Networks and Learning Systems 31 (6), 2064-2076. https://doi.org/10.1109/TNNLS.2019.2927869

Martínez, J. L., Morales, J., Sánchez, M., Morán, M., Reina, A. J., Fernández- Lozano, J. J., 2020. Reactive navigation on natural environments by continuous classification of ground traversability. Sensors 20 (22), 6423. https://doi.org/10.3390/s20226423

Mobarhani, A., Nazari, S., Tamjidi, A. H., Taghirad, H. D., 2011. Histogram based frontier exploration. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). pp. 1128-1133. https://doi.org/10.1109/IROS.2011.6095018

Moravec, H., Elfes, A., 1985. High resolution maps from wide angle sonar. In: Proc. of the IEEE Int. Conf. on Robotics and Automation. Vol. 2. pp. 116-121. https://doi.org/10.1109/ROBOT.1985.1087316

Open Source Robotics Foundation, I., 2018. Ros/navigation/. Last accessed on 9.11.2022. URL http://wiki.ros.org/navigation.

Open Source Robotics Foundation, I., 2019. Ros/husky. Last accessed on 9.11.2022. URL: http://wiki.ros.org/Robots/Husky.

Open Source Robotics Foundation, I., 2020. Turtlebot3. Last accessed on 9.11.2022. URL: http://wiki.ros.org/Robots/TurtleBot.

Perea Ström, D., Bogoslavskyi, I., Stachniss, C., 2017. Robust exploration and homing for autonomous robots. Robotics and Autonomous Systems 90, 125-135, special Issue on New Research Frontiers for Intelligent Autonomous Systems. https://doi.org/10.1016/j.robot.2016.08.015

Russel, S., Norvig, P., 2021. Artificial Intelligence: A Modern Approach, 4th Edition. Pearson.

Shannon, C. E., 2001. A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review 5 (1), 3-55. https://doi.org/10.1145/584091.584093

Shrestha, R., Tian, F.-P., Feng, W., Tan, P., Vaughan, R., 2019. Learned map prediction for enhanced mobile robot exploration. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA). pp. 1197-1204. https://doi.org/10.1109/ICRA.2019.8793769

Stachniss, C., Grisetti, G., Burgard, W., 2005. Information gain-based exploration using rao-blackwellized particle filters. In: Robotics: Science and systems. Vol. 2. pp. 65-72. https://doi.org/10.15607/RSS.2005.I.009

Umari, H., Mukhopadhyay, S., 2017a. Autonomous robotic exploration based on multiple rapidly-exploring randomized trees. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). pp. 1396-1402. https://doi.org/10.1109/IROS.2017.8202319

Umari, H., Mukhopadhyay, S., 2017b. Autonomous robotic exploration based on multiple rapidly-exploring randomized trees. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). pp. 1396-1402. https://doi.org/10.1109/IROS.2017.8202319

Vázquez-Martín, R., 2009. online environment segmentation based on spectral mapping (less-mapping). Ph.D. thesis, Universidad de Málaga.

Wang, J., Englot, B., 2020. Autonomous exploration with expectationmaximization. In: Amato, N. M., Hager, G., Thomas, S., Torres-Torriti, M. (Eds.), Robotics Research. Springer International Publishing, Cham, pp. 759-774.

Yamauchi, B., 1997. A frontier-based approach for autonomous exploration. In: Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation. pp. 146-151. https://doi.org/10.1109/CIRA.1997.613851

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem