- -

Sistema domótico controlado a través de una interfaz cerebro-ordenador

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Sistema domótico controlado a través de una interfaz cerebro-ordenador

Show full item record

Velasco-Álvarez, F.; Fernández-Rodríguez, Á.; Ron-Angevin, R. (2023). Sistema domótico controlado a través de una interfaz cerebro-ordenador. Revista Iberoamericana de Automática e Informática industrial. 20(2):224-235. https://doi.org/10.4995/riai.2023.18718

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192804

Files in this item

Item Metadata

Title: Sistema domótico controlado a través de una interfaz cerebro-ordenador
Secondary Title: Home automation system controlled through a brain-computer interface
Author: Velasco-Álvarez, Francisco Fernández-Rodríguez, Álvaro Ron-Angevin, Ricardo
Issued date:
Abstract:
[EN] Brain-computer interface (BCI) technology permits brain activity to be used as a communication channel without the usage of muscular action in order to control a computer or different devices, such as a home automation ...[+]


[ES] Las interfaces cerebro-ordenador (BCI, de brain-computer interface) permiten utilizar la actividad cerebral de un usuario como canal de comunicación para interactuar con determinados dispositivos. Sin embargo, adaptar ...[+]
Subjects: Brain-computer interface , Home automation , Voice , Event-related potential , Interfaz cerebro-ordenador , Domótica , Voz , Potencial relacionado con eventos
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.18718
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/riai.2023.18718
Project ID:
info:eu-repo/grantAgreement/AEI//PID2021-127261OB-I00
Thanks:
Este trabajo es parte del proyecto SICODIS (PID2021-127261OB-I00), que ha sido financiado conjuntamente por el Ministerio de Ciencia, Innovación y Universidades (MCIU), la Agencia Estatal de Investigación (AEI), el Fondo ...[+]
Type: Artículo

References

Allison, B. Z., Kübler, A., & Jin, J. (2020). 30+ years of P300 brain-computer interfaces. Psychophysiology, 57(7), 1-18. https://doi.org/10.1111/psyp.13569

Aydın, E. A., Bay, Ö. F., & Güler, İ. (2016). Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments. Journal of Medical Systems, 40(1), 1-10. https://doi.org/10.1007/s10916-015-0386-0

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447310802205776 [+]
Allison, B. Z., Kübler, A., & Jin, J. (2020). 30+ years of P300 brain-computer interfaces. Psychophysiology, 57(7), 1-18. https://doi.org/10.1111/psyp.13569

Aydın, E. A., Bay, Ö. F., & Güler, İ. (2016). Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments. Journal of Medical Systems, 40(1), 1-10. https://doi.org/10.1007/s10916-015-0386-0

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447310802205776

Brooke, J. (1996). SUS - A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4-7. https://doi.org/10.1002/hbm.20701

Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., & Niu, H. (2020). A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomedical Signal Processing and Control, 56, 101687. https://doi.org/10.1016/j.bspc.2019.101687

Corralejo, R., Nicolás-Alonso, L. F., Álvarez, D., & Hornero, R. (2014). A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Medical and Biological Engineering and Computing, 52(10), 861-872. https://doi.org/10.1007/s11517-014-1191-5

Fernández-Rodríguez, Á., Medina-Juliá, M. T., Velasco-Álvarez, F., & Ron-Angevin, R. (2021). Different effects of using pictures as stimuli in a P300 brain-computer interface under rapid serial visual presentation or row-column paradigm. Medical and Biological Engineering and Computing, 59(4), 869-881. https://doi.org/10.1007/s11517-021-02340-y

Furdea, A., Halder, S., Krusienski, D. J., Bross, D., Nijboer, F., Birbaumer, N., & Kübler, A. (2009). An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology, 46(3), 617-625. https://doi.org/10.1111/j.1469-8986.2008.00783.x

Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 904-908. https://doi.org/10.1177/154193120605000909

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology (Vol. 52, Issue C, pp. 139-183). https://doi.org/10.1016/S0166-4115(08)62386-9

Hsieh, K. L., Sun, K. T., Yeh, J. K., & Pan, Y. U. (2017). Home care by auditory Brain Computer Interface for the blind with severe physical disabilities. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 527-530. https://doi.org/10.1109/ICASI.2017.7988473

Jin, J., Chen, Z., Xu, R., Miao, Y., Wang, X., & Jung, T. P. (2020). Developing a Novel Tactile P300 Brain-Computer Interface with a Cheeks-Stim Paradigm. IEEE Transactions on Biomedical Engineering, 67(9), 2585-2593. https://doi.org/10.1109/TBME.2020.2965178

Jin, J., Li, S., Daly, I., Miao, Y., Liu, C., Wang, X., & Cichocki, A. (2020). The Study of Generic Model Set for Reducing Calibration Time in P300-Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 3-12. https://doi.org/10.1109/TNSRE.2019.2956488

Kosmyna, N., Tarpin-Bernard, F., Bonnefond, N., & Rivet, B. (2016). Feasibility of BCI control in a realistic smart home environment. Frontiers in Human Neuroscience, 10(August), 10. https://doi.org/10.3389/fnhum.2016.00416

Kubler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., & Birbaumer, N. P. (2001). Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Archives of Physical Medicine and Rehabilitation, 82(11), 1533-1539. https://doi.org/10.1053/apmr.2001.26621

Labib, F. E. Z. M., Fouad, I. A., Mabrouk, M. S., & Sharawy, A. A. (2020). MULTIPLE CLASSIFICATION TECHNIQUES TOWARD A ROBUST and RELIABLE P300 BCI SYSTEM. Biomedical Engineering - Applications, Basis and Communications, 32(2), 1-12. https://doi.org/10.4015/S1016237220500106

Li, G. L., Wu, J. T., Xia, Y. H., He, Q. G., & Jin, H. G. (2020). Review of semi-dry electrodes for EEG recording. Journal of Neural Engineering, 17(5). https://doi.org/10.1088/1741-2552/abbd50

Liu, Y., Liu, Y., Tang, J., Yin, E., Hu, D., & Zhou, Z. (2020). A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Computers in Biology and Medicine, 118(January), 103618. https://doi.org/10.1016/j.compbiomed.2020.103618

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of Neural Engineering, 15(3). https://doi.org/10.1088/1741-2552/aab2f2

Lu, Z., Li, Q., Gao, N., Yang, J., & Bai, O. (2019). Happy emotion cognition of bimodal audiovisual stimuli optimizes the performance of the P300 speller. Brain and Behavior, September, 1-13. https://doi.org/10.1002/brb3.1479

Medina-Juliá, M. T., Fernández-Rodríguez, Á., Velasco-Álvarez, F., & Ron-Angevin, R. (2020). P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients. Frontiers in Human Neuroscience, 14(October), 1-10. https://doi.org/10.3389/fnhum.2020.583358

Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211-1279. https://doi.org/10.3390/s120201211

Park, S., Cha, H. S., & Im, C. H. (2019). Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface. IEEE Access, 7, 163604-163614. https://doi.org/10.1109/ACCESS.2019.2952613

Ryan, D. B., Colwell, K. A., Throckmorton, C. S., Collins, L. M., Caves, K., & Sellers, E. W. (2018). Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms. Clinical EEG and Neuroscience, 49(2), 114-121. https://doi.org/10.1177/1550059417737443

Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., Khandoker, A. H., & Baumert, M. (2021). Progress in Brain Computer Interface: Challenges and Opportunities. Frontiers in Systems Neuroscience, 15(February), 1-20. https://doi.org/10.3389/fnsys.2021.578875

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R.(2004). BCI2000: A general-purpose brain-computer interface (BCI) system. In IEEE Transactions on Biomedical Engineering (Vol. 51, Issue 6, pp. 1034-1043). https://doi.org/10.1109/TBME.2004.827072

Shivappa, V. K. K., Luu, B., Solis, M., & George, K. (2018). Home automation system using brain computer interface paradigm based on auditory selection attention. I2MTC 2018 - 2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings, 1-6. https://doi.org/10.1109/I2MTC.2018.8409863

Sun, K. T., Hsieh, K. L., & Syu, S. R. (2020). Towards an accessible use of a brain-computer interfaces-based home care system through a smartphone. Computational Intelligence and Neuroscience, 2020, 16-18. https://doi.org/10.1155/2020/1843269

Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, C. K., Schwartz, N. E., Vaughan, T. M., Wolpaw, J. R., & Sellers, E. W. (2010). A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 121(7), 1109-1120. https://doi.org/10.1016/j.clinph.2010.01.030

Utsumi, K., Takano, K., Okahara, Y., Komori, T., Onodera, O., & Kansaku, K. (2018). Operation of a P300-based braincomputer interface in patientswith Duchenne muscular dystrophy. Scientific Reports, 8(1), 4-11. https://doi.org/10.1038/s41598-018-20125-6

Velasco-Álvarez, F., Fernández-Rodríguez, Á., Vizcaíno-Martín, F.-J., Díaz-Estrella, A., & Ron-Angevin, R. (2021). Brain-Computer Interface (BCI) Control of a Virtual Assistant in a Smartphone to Manage Messaging Applications. Sensors, 21(11). https://doi.org/10.3390/s21113716

Velasco-Álvarez, F., Sancha-Ros, S., García-Garaluz, E., Fernández-Rodríguez, Á., Medina-Juliá, M. T. T., & Ron-Angevin, R. (2019). UMA-BCI Speller: an Easily Configurable P300 Speller Tool for End Users. Computer Methods and Programs in Biomedicine, 172, 127-138. https://doi.org/10.1016/j.cmpb.2019.02.015

Wolpaw, J. R., Ramoser, H., McFarland, D. J., & Pfurtscheller, G. (1998). EEG-based communication: Improved accuracy by response verification. IEEE Transactions on Rehabilitation Engineering, 6(3), 326-333. https://doi.org/10.1109/86.712231

Wolpaw, Jonathan R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. https://doi.org/10.1016/S1388-2457(02)00057-3

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record