- -

Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomes, Veronique es_ES
dc.contributor.author Reis, Marco S. es_ES
dc.contributor.author Rovira Más, Francisco es_ES
dc.contributor.author Mendes-Ferreira, Ana es_ES
dc.contributor.author Melo-Pinto, Pedro es_ES
dc.date.accessioned 2023-04-18T18:00:39Z
dc.date.available 2023-04-18T18:00:39Z
dc.date.issued 2021-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192818
dc.description.abstract [EN] The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods. es_ES
dc.description.sponsorship This research was funded by Portuguese-FCT (PD/BD/128272/2017), under the Agrichains Doctoral Programme (PD/00122/2012). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Processes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wine quality es_ES
dc.subject Machine learning es_ES
dc.subject One-dimensional convolutional neural network es_ES
dc.subject Hyperspectral imaging es_ES
dc.subject Predictive analytics es_ES
dc.subject Grape ripeness es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/pr9071241 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/Investigador FCT/IF%2F00122%2F2012%2FCP0171%2FCT0001/PT es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/POR_NORTE/PD%2FBD%2F128272%2F2017/PT es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Gomes, V.; Reis, MS.; Rovira Más, F.; Mendes-Ferreira, A.; Melo-Pinto, P. (2021). Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging. Processes. 9(7):1-16. https://doi.org/10.3390/pr9071241 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/pr9071241 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2227-9717 es_ES
dc.relation.pasarela S\443878 es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem