Girshick, R. (2015) ‘Fast R-CNN’, Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169
Hatir, M. E., Barstuğan, M. and İnce, İ. (2020) ‘Deep learning-based weathering type recognition in historical stone monuments’, Journal of Cultural Heritage, 45, pp. 193–203. https://doi.org/10.1016/j.culher.2020.04.008
He, K. et al. (2016) ‘Deep residual learning for image recognition’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
[+]
Girshick, R. (2015) ‘Fast R-CNN’, Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169
Hatir, M. E., Barstuğan, M. and İnce, İ. (2020) ‘Deep learning-based weathering type recognition in historical stone monuments’, Journal of Cultural Heritage, 45, pp. 193–203. https://doi.org/10.1016/j.culher.2020.04.008
He, K. et al. (2016) ‘Deep residual learning for image recognition’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
He, K. et al. (2017) ‘Mask R-CNN’, in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322
ICOMOS ISCS. (2008) Illustrated glossary on stone deterioration patterns.
Json (no date). https://www.json.org/json-en.html
Kalfarisi, R., Wu, Z. Y. and Soh, K. (2020) ‘Crack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization’, Journal of Computing in Civil Engineering, 34(3), pp. 1–20. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000890
Khandelwal, R. (2019). Computer vision: instance segmentation with mask R-CNN. Dostupné z:” https://towardsdatascience.com/computer-vision-instancesegmentation-with-mask-r-cnn-7983502fcad1.
keras (no date). https://keras.io/
Kim, B. and Cho, S. (2019) ‘Image-based concrete crack assessment using mask and region-based convolutional neural network’, Structural Control and Health Monitoring, 26(8), pp. 1–15. https://doi.org/10.1002/stc.2381
Li, X. et al. (2019) ‘Weighted feature pyramid networks for object detection’, Proceedings - 2019 IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00217
Lin, T. Y. et al. (2014) ‘Microsoft COCO: Common objects in context’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5), pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Z. et al. (2019) ‘Computer vision-based concrete crack detection using U-net fully convolutional networks’, Automation in Construction. Elsevier, 104(January), pp. 129–139. https://doi.org/10.1016/j.autcon.2019.04.005
Mask R-CNN library (no date). https://github.com/matterport/Mask_RCNN
Mishra, M. (2021) ‘Machine learning techniques for structural health monitoring of heritage buildings: A state-of- the-art review and case studies’, Journal of Cultural Heritage, 47, pp. 227–245. https://doi.org/10.1016/j.culher.2020.09.005
Odemakinde, E. (no date) Mask R-CNN: A Beginner’s Guide.
OpenCV (no date). https://opencv.org/
Perez, H., Tah, J. H. M. and Mosavi, A. (2019) ‘Deep Learning for Detecting Building Defects Using’, Sensors, 19(16), p. 3556. https://doi.org/10.3390/s19163556
Ren, S. et al. (2017) ‘Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
Renu Khandelwal (2019) Computer Vision: Instance Segmentation with Mask R-CNN.
Sagar, V. and Jain, S. J. (2018) ‘Yield Estimation using faster R-CNN’, International Research Journal in GlobalEngineering and Sciences., 3(1), pp. 110–116.
Scikit image (no date). https://scikit-image.org/
TensorFlow (no date). https://www.tensorflow.org
UNI (2006) ‘UNI 11182 Beni culturali - Materiali lapidei naturali e artificiali - Descrizione della forma di alterazione - Termini e definizioni’.
Wu, Z. Y. et al. (2020) ‘Applying deep convolutional neural network with 3D reality mesh model for water tank crack detection and evaluation’, Urban Water Journal, 17(8), pp. 682–695. https://doi.org/10.1080/1573062X.2020.1758166
Xu, X. et al. (2022) ‘Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN’, Sensors, 22(3). https://doi.org/10.3390/s22031215
[-]