- -

Decay detection in historic buildings through image-based deep learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Decay detection in historic buildings through image-based deep learning

Mostrar el registro completo del ítem

Bruno, S.; Galantucci, RA.; Musicco, A. (2023). Decay detection in historic buildings through image-based deep learning. VITRUVIO - International Journal of Architectural Technology and Sustainability. 8:6-17. https://doi.org/10.4995/vitruvio-ijats.2023.18662

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192954

Ficheros en el ítem

Metadatos del ítem

Título: Decay detection in historic buildings through image-based deep learning
Autor: Bruno, Silvana Galantucci, Rosella Alessia Musicco, Antonella
Fecha difusión:
Resumen:
[EN] Nowadays, built heritage condition assessment is realized through on-site or photo-aided visual inspections, reporting pathologies manually on drawings, photographs, notes. The knowledge of the state of conservation ...[+]
Palabras clave: Built heritage , Historic buildings , Decay detection , Deep learning , Mask R-CNN
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
VITRUVIO - International Journal of Architectural Technology and Sustainability. (eissn: 2444-9091 )
DOI: 10.4995/vitruvio-ijats.2023.18662
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/vitruvio-ijats.2023.18662
Tipo: Artículo

References

Girshick, R. (2015) ‘Fast R-CNN’, Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169

Hatir, M. E., Barstuğan, M. and İnce, İ. (2020) ‘Deep learning-based weathering type recognition in historical stone monuments’, Journal of Cultural Heritage, 45, pp. 193–203. https://doi.org/10.1016/j.culher.2020.04.008

He, K. et al. (2016) ‘Deep residual learning for image recognition’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 [+]
Girshick, R. (2015) ‘Fast R-CNN’, Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169

Hatir, M. E., Barstuğan, M. and İnce, İ. (2020) ‘Deep learning-based weathering type recognition in historical stone monuments’, Journal of Cultural Heritage, 45, pp. 193–203. https://doi.org/10.1016/j.culher.2020.04.008

He, K. et al. (2016) ‘Deep residual learning for image recognition’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

He, K. et al. (2017) ‘Mask R-CNN’, in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322

ICOMOS ISCS. (2008) Illustrated glossary on stone deterioration patterns.

Json (no date). https://www.json.org/json-en.html

Kalfarisi, R., Wu, Z. Y. and Soh, K. (2020) ‘Crack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization’, Journal of Computing in Civil Engineering, 34(3), pp. 1–20. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000890

Khandelwal, R. (2019). Computer vision: instance segmentation with mask R-CNN. Dostupné z:” https://towardsdatascience.com/computer-vision-instancesegmentation-with-mask-r-cnn-7983502fcad1.

keras (no date). https://keras.io/

Kim, B. and Cho, S. (2019) ‘Image-based concrete crack assessment using mask and region-based convolutional neural network’, Structural Control and Health Monitoring, 26(8), pp. 1–15. https://doi.org/10.1002/stc.2381

Li, X. et al. (2019) ‘Weighted feature pyramid networks for object detection’, Proceedings - 2019 IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00217

Lin, T. Y. et al. (2014) ‘Microsoft COCO: Common objects in context’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5), pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

Liu, Z. et al. (2019) ‘Computer vision-based concrete crack detection using U-net fully convolutional networks’, Automation in Construction. Elsevier, 104(January), pp. 129–139. https://doi.org/10.1016/j.autcon.2019.04.005

Mask R-CNN library (no date). https://github.com/matterport/Mask_RCNN

Mishra, M. (2021) ‘Machine learning techniques for structural health monitoring of heritage buildings: A state-of- the-art review and case studies’, Journal of Cultural Heritage, 47, pp. 227–245. https://doi.org/10.1016/j.culher.2020.09.005

Odemakinde, E. (no date) Mask R-CNN: A Beginner’s Guide.

OpenCV (no date). https://opencv.org/

Perez, H., Tah, J. H. M. and Mosavi, A. (2019) ‘Deep Learning for Detecting Building Defects Using’, Sensors, 19(16), p. 3556. https://doi.org/10.3390/s19163556

Ren, S. et al. (2017) ‘Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

Renu Khandelwal (2019) Computer Vision: Instance Segmentation with Mask R-CNN.

Sagar, V. and Jain, S. J. (2018) ‘Yield Estimation using faster R-CNN’, International Research Journal in GlobalEngineering and Sciences., 3(1), pp. 110–116.

Scikit image (no date). https://scikit-image.org/

TensorFlow (no date). https://www.tensorflow.org

UNI (2006) ‘UNI 11182 Beni culturali - Materiali lapidei naturali e artificiali - Descrizione della forma di alterazione - Termini e definizioni’.

Wu, Z. Y. et al. (2020) ‘Applying deep convolutional neural network with 3D reality mesh model for water tank crack detection and evaluation’, Urban Water Journal, 17(8), pp. 682–695. https://doi.org/10.1080/1573062X.2020.1758166

Xu, X. et al. (2022) ‘Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN’, Sensors, 22(3). https://doi.org/10.3390/s22031215

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem