- -

Decay detection in historic buildings through image-based deep learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Decay detection in historic buildings through image-based deep learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bruno, Silvana es_ES
dc.contributor.author Galantucci, Rosella Alessia es_ES
dc.contributor.author Musicco, Antonella es_ES
dc.date.accessioned 2023-04-26T06:29:49Z
dc.date.available 2023-04-26T06:29:49Z
dc.date.issued 2023-04-04
dc.identifier.uri http://hdl.handle.net/10251/192954
dc.description.abstract [EN] Nowadays, built heritage condition assessment is realized through on-site or photo-aided visual inspections, reporting pathologies manually on drawings, photographs, notes. The knowledge of the state of conservation goes through subjective and time or cost consuming procedures. This is even relevant for a historic building characterized by geometrical and morphological complexity and huge extension, or at risk of collapse. In this context, advancements in the field of Computer Vision and Artificial Intelligence provide an opportunity to address these criticalities. The proposed methodology is based on a Mask R-CNN model, for the detection of decay morphologies on built heritages, and, particularly on historic buildings. The experimentation has been carried out and validated on a highly heterogeneous dataset of images of historic buildings, representative of the regional Architectural Heritage, such as: castles, monasteries, noble buildings, rural buildings. The outcomes highlighted the significance of this remote, non-invasive inspection technique, in support of the technicians in the preliminary knowledge of the building state of conservation, and, most of all, in the decay mapping of some particular classes of alterations (moist area, biological colonization). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof VITRUVIO - International Journal of Architectural Technology and Sustainability es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Built heritage es_ES
dc.subject Historic buildings es_ES
dc.subject Decay detection es_ES
dc.subject Deep learning es_ES
dc.subject Mask R-CNN es_ES
dc.title Decay detection in historic buildings through image-based deep learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/vitruvio-ijats.2023.18662
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bruno, S.; Galantucci, RA.; Musicco, A. (2023). Decay detection in historic buildings through image-based deep learning. VITRUVIO - International Journal of Architectural Technology and Sustainability. 8:6-17. https://doi.org/10.4995/vitruvio-ijats.2023.18662 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/vitruvio-ijats.2023.18662 es_ES
dc.description.upvformatpinicio 6 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2444-9091
dc.relation.pasarela OJS\18662 es_ES
dc.description.references Girshick, R. (2015) ‘Fast R-CNN’, Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169 es_ES
dc.description.references Hatir, M. E., Barstuğan, M. and İnce, İ. (2020) ‘Deep learning-based weathering type recognition in historical stone monuments’, Journal of Cultural Heritage, 45, pp. 193–203. https://doi.org/10.1016/j.culher.2020.04.008 es_ES
dc.description.references He, K. et al. (2016) ‘Deep residual learning for image recognition’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 es_ES
dc.description.references He, K. et al. (2017) ‘Mask R-CNN’, in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322 es_ES
dc.description.references ICOMOS ISCS. (2008) Illustrated glossary on stone deterioration patterns. es_ES
dc.description.references Json (no date). https://www.json.org/json-en.html es_ES
dc.description.references Kalfarisi, R., Wu, Z. Y. and Soh, K. (2020) ‘Crack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization’, Journal of Computing in Civil Engineering, 34(3), pp. 1–20. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000890 es_ES
dc.description.references Khandelwal, R. (2019). Computer vision: instance segmentation with mask R-CNN. Dostupné z:” https://towardsdatascience.com/computer-vision-instancesegmentation-with-mask-r-cnn-7983502fcad1. es_ES
dc.description.references keras (no date). https://keras.io/ es_ES
dc.description.references Kim, B. and Cho, S. (2019) ‘Image-based concrete crack assessment using mask and region-based convolutional neural network’, Structural Control and Health Monitoring, 26(8), pp. 1–15. https://doi.org/10.1002/stc.2381 es_ES
dc.description.references Li, X. et al. (2019) ‘Weighted feature pyramid networks for object detection’, Proceedings - 2019 IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00217 es_ES
dc.description.references Lin, T. Y. et al. (2014) ‘Microsoft COCO: Common objects in context’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5), pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48 es_ES
dc.description.references Liu, Z. et al. (2019) ‘Computer vision-based concrete crack detection using U-net fully convolutional networks’, Automation in Construction. Elsevier, 104(January), pp. 129–139. https://doi.org/10.1016/j.autcon.2019.04.005 es_ES
dc.description.references Mask R-CNN library (no date). https://github.com/matterport/Mask_RCNN es_ES
dc.description.references Mishra, M. (2021) ‘Machine learning techniques for structural health monitoring of heritage buildings: A state-of- the-art review and case studies’, Journal of Cultural Heritage, 47, pp. 227–245. https://doi.org/10.1016/j.culher.2020.09.005 es_ES
dc.description.references Odemakinde, E. (no date) Mask R-CNN: A Beginner’s Guide. es_ES
dc.description.references OpenCV (no date). https://opencv.org/ es_ES
dc.description.references Perez, H., Tah, J. H. M. and Mosavi, A. (2019) ‘Deep Learning for Detecting Building Defects Using’, Sensors, 19(16), p. 3556. https://doi.org/10.3390/s19163556 es_ES
dc.description.references Ren, S. et al. (2017) ‘Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 es_ES
dc.description.references Renu Khandelwal (2019) Computer Vision: Instance Segmentation with Mask R-CNN. es_ES
dc.description.references Sagar, V. and Jain, S. J. (2018) ‘Yield Estimation using faster R-CNN’, International Research Journal in GlobalEngineering and Sciences., 3(1), pp. 110–116. es_ES
dc.description.references Scikit image (no date). https://scikit-image.org/ es_ES
dc.description.references TensorFlow (no date). https://www.tensorflow.org es_ES
dc.description.references UNI (2006) ‘UNI 11182 Beni culturali - Materiali lapidei naturali e artificiali - Descrizione della forma di alterazione - Termini e definizioni’. es_ES
dc.description.references Wu, Z. Y. et al. (2020) ‘Applying deep convolutional neural network with 3D reality mesh model for water tank crack detection and evaluation’, Urban Water Journal, 17(8), pp. 682–695. https://doi.org/10.1080/1573062X.2020.1758166 es_ES
dc.description.references Xu, X. et al. (2022) ‘Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN’, Sensors, 22(3). https://doi.org/10.3390/s22031215 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem