- -

3D printed concrete blocks made with sustainable recycled material

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3D printed concrete blocks made with sustainable recycled material

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Volpe, Stelladriana es_ES
dc.contributor.author Sangiorgio, Valentino es_ES
dc.contributor.author Petrella, Andrea es_ES
dc.contributor.author Notarnicola, Michele es_ES
dc.contributor.author Varum, Humberto es_ES
dc.contributor.author Fiorito, Francesco es_ES
dc.date.accessioned 2023-04-26T06:46:44Z
dc.date.available 2023-04-26T06:46:44Z
dc.date.issued 2023-04-04
dc.identifier.uri http://hdl.handle.net/10251/192959
dc.description.abstract [EN] The use of recovered materials in building construction is one of the most effective strategies for reducing the environmental impacts of the construction sector. Innovative technologies such as 3D construction printing can be applied in combination with recycling strategies in order to optimise their performances also from an environmental point of view. In fact, several studies have proposed the processing of waste material into printable material. At the same time, performance studies must be conducted on the building components produced by these methods. This study proposes a methodological approach to design a 3D printable building component made with recycled materials considering the improvement of thermal performances. In particular, the approach is based on three steps: reuse strategy conception; target performance definition, modelling and iterative simulation; 3D printing setting. The methodological approach has been applied to a 3D printable block using as printable material a cement-based mortar with recycled aggregates and recycled insulating material. As a result, the component s shape (interlocking and inspired by honeycombs) can be customised to achieve the required thermal performance by using recycled materials in the printing process. es_ES
dc.description.sponsorship This research was funded by the European Union – European Social Fund – PON Research and Innovation 20214- 2020. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof VITRUVIO - International Journal of Architectural Technology and Sustainability es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject 3D Construction Printing es_ES
dc.subject Recycled Material es_ES
dc.subject Thermal Performances es_ES
dc.subject Building envelope es_ES
dc.subject Thechnical architecture es_ES
dc.subject Building innovation and digitization es_ES
dc.title 3D printed concrete blocks made with sustainable recycled material es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/vitruvio-ijats.2023.18832
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Volpe, S.; Sangiorgio, V.; Petrella, A.; Notarnicola, M.; Varum, H.; Fiorito, F. (2023). 3D printed concrete blocks made with sustainable recycled material. VITRUVIO - International Journal of Architectural Technology and Sustainability. 8:70-83. https://doi.org/10.4995/vitruvio-ijats.2023.18832 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/vitruvio-ijats.2023.18832 es_ES
dc.description.upvformatpinicio 70 es_ES
dc.description.upvformatpfin 83 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2444-9091
dc.relation.pasarela OJS\18832 es_ES
dc.contributor.funder European Social Fund es_ES
dc.description.references Adhikari, B., De, D., Maiti, S., (2000). Reclamation and recycling of waste rubber. Prog Polym Sci 25, 909–948. https://doi.org/10.1016/S0079-6700(00)00020-4 es_ES
dc.description.references Adhikary, S.K., Ashish, D.K., Rudžionis, Ž., (2021). Expanded glass as light-weight aggregate in concrete – A review. J Clean Prod 313, 127848. https://doi.org/10.1016/J.JCLEPRO.2021.127848 es_ES
dc.description.references Ahmad, M.R., Chen, B., (2018). Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar. Constr Build Mater 190, 466–478. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.143 es_ES
dc.description.references Christen, H., van Zijl, G., de Villiers, W., (2022). The incorporation of recycled brick aggregate in 3D printed concrete. Cleaner Materials 4, 100090. https://doi.org/10.1016/J.CLEMA.2022.100090 es_ES
dc.description.references Colglazier, W., (2015). Sustainable development agenda: 2030. Science (1979) 349, 1048–1050. https://doi.org/10.1126/science. aad2333 es_ES
dc.description.references De Andrade Salgado, F., de Andrade Silva, F., (2022). Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. Journal of Building Engineering 52, 104452. https://doi.org/10.1016/J.JOBE.2022.104452 es_ES
dc.description.references Del Coz Díaz, J.J., García Nieto, P.J., Rodríguez, A.M., Martínez-Luengas, A.L., Biempica, C.B., (2006). Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation. Appl Therm Eng 26, 777–786. https://doi.org/10.1016/J.APPLTHERMALENG.2005.10.012 es_ES
dc.description.references Ding, T., Xiao, J., Zou, S., Wang, Y., (2020). Hardened properties of layered 3D printed concrete with recycled sand. Cem Concr Compos 113, 103724. https://doi.org/10.1016/j.cemconcomp.2020.103724 es_ES
dc.description.references Freitas, J. de S., Cronemberger, J., Soares, R.M., Amorim, C.N.D., (2020). Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug. Renew Energy 160, 1468–1479. https://doi.org/10.1016/j.renene.2020.05.137 es_ES
dc.description.references Goode, A.H., Tyrrell, M.E., Feld, I.L., (1972). Glass wool from waste glass. US Department of Interior, Bureau of Mines. es_ES
dc.description.references Gustafsson, S.E., (1991). Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments 62, 797–804. https://doi.org/10.1063/1.1142087 es_ES
dc.description.references Han, Y., Yang, Z., Ding, T., Xiao, J., (2021). Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod 278, 123884. https://doi.org/10.1016/J.JCLEPRO.2020.123884 es_ES
dc.description.references Jeffrey, C., (2011). Construction and demolition waste recycling: A literature review. Dalhousie University’s Office of Sustainability 35. es_ES
dc.description.references Jianming, Y., Luming, W., Cheng, J., Dong, S., (2020). Effect of fly ash on the corrosion resistance of magnesium potassium phosphate cement paste in sulfate solution. Constr Build Mater 237, 117639. https://doi.org/10.1016/j.conbuildmat.2019.117639 es_ES
dc.description.references Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., Castro, M., (2020). A review of 3D and 4D printing of natural fibre biocomposites. Mater Des 194, 108911. https://doi.org/10.1016/J.MATDES.2020.108911 es_ES
dc.description.references Liu, H., Liu, C., Wu, Y., Bai, G., He, C., Zhang, R., Wang, Y., (2022). Hardened properties of 3D printed concrete with recycled coarse aggregate. Cem Concr Res 159, 106868. https://doi.org/10.1016/J.CEMCONRES.2022.106868 es_ES
dc.description.references Liu, Z., Li, M., Weng, Y., Wong, T.N., Tan, M.J., (2019). Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing. Constr Build Mater 198, 245–255. https://doi.org/10.1016/J.CONBUILDMAT.2018.11.252 es_ES
dc.description.references Lopez Hurtado, P., Rouilly, A., Vandenbossche, V., Raynaud, C., (2016). A review on the properties of cellulose fibre insulation. Build Environ 96, 170–177. https://doi.org/10.1016/j.buildenv.2015.09.031 es_ES
dc.description.references Majumder, A., Canale, L., Mastino, C.C., Pacitto, A., Frattolillo, A., Dell’Isola, M., (2021). Thermal Characterization of Recycled Materials for Building Insulation. Energies (Basel) 14. https://doi.org/10.3390/en14123564 es_ES
dc.description.references Medina, N.F., Medina, D.F., Hernández-Olivares, F., Navacerrada, M.A., (2017). Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr Build Mater 144, 563–573. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.196 es_ES
dc.description.references Ministero dello Sviluppo Economico: Roma, (2015). Decreto Ministeriale 26 Giugno 2015. Applicazione Delle Metodologie di Calcolo Delle Prestazioni Energetiche e Definizione Delle Prescrizioni e dei Requisiti Minimi Degli Edifici, Governo Italiano. Italy. es_ES
dc.description.references Muthukrishnan, S., Kua, H.W., Yu, L.N., Chung, J.K.H., (2020). Fresh Properties of Cementitious Materials Containing Rice Husk Ash for Construction 3D Printing. Journal of Materials in Civil Engineering 32. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003230 es_ES
dc.description.references Panda, B., Lim, J.H., Tan, M.J., (2019). Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos B Eng 165, 563–571. https://doi.org/10.1016/J.COMPOSITESB.2019.02.040 es_ES
dc.description.references Qian, H., Hua, S., Yue, H., Feng, G., Qian, L., Jiang, W., Zhang, L., (2022). Optimizing the Application of Recycled Dust Powder in 3d Concrete Printing Materials Through Particle Densely Packing Theory. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4079313 es_ES
dc.description.references Ricciardi, P., Belloni, E., Cotana, F., (2014). Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment. Appl Energy 134, 150–162. https://doi.org/10.1016/J.APENERGY.2014.07.112 es_ES
dc.description.references Roussel, N., (2018). Rheological requirements for printable concretes. Cem Concr Res 112, 76–85. https://doi.org/10.1016/J.CEMCONRES.2018.04.005 es_ES
dc.description.references Sangiorgio, V., Parisi, F., Fieni, F., Parisi, N., (2022). The New Boundaries of 3D-Printed Clay Bricks Design: Printability of Complex Internal Geometries. Sustainability 14, 598. https://doi.org/10.3390/su14020598 es_ES
dc.description.references Streimikiene, D., Skulskis, V., Balezentis, T., Agnusdei, G.P., (2020). Uncertain multi-criteria sustainability assessment of green building insulation materials. Energy Build 219, 110021. https://doi.org/10.1016/J.ENBUILD.2020.110021 es_ES
dc.description.references Sun, S., Liu, R., Zhao, X., Zhang, Y., Yang, Y., (2019). Investigation on the water resistance of the fly-ash modified magnesium phosphate cement. IOP Conf Ser Mater Sci Eng 587, 12007. https://doi.org/10.1088/1757-899X/587/1/012007 es_ES
dc.description.references Ting, G.H.A., Tay, Y.W.D., Tan, M.J., (2021). Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing. J Clean Prod 300, 126919. https://doi.org/10.1016/J.JCLEPRO.2021.126919 es_ES
dc.description.references Tinoco, M.P., de Mendonça, É.M., Fernandez, L.I.C., Caldas, L.R., Reales, O.A.M., Toledo Filho, R.D., (2022). Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. Journal of Building Engineering 52, 104456. https://doi.org/10.1016/J.JOBE.2022.104456 es_ES
dc.description.references Volpe, S., Petrella, A., Sangiorgio, V., Notarnicola, M., Fiorito, F., (2021a). Preparation and characterization of novel environmentally sustainable mortars based on magnesium potassium phosphate cement for additive manufacturing. AIMS Mater Sci 8, 640–658. https://doi.org/10.3934/matersci.2021039 es_ES
dc.description.references Volpe, S., Sangiorgio, V., Fiorito, F., n.d. (2022). Design of an efficient 3D printed envelope supported by parametric modelling, in: Colloqui.AT.e .Memoria e Innovazione. es_ES
dc.description.references Volpe, S., Sangiorgio, V., Petrella, A., Coppola, A., Notarnicola, M., Fiorito, F., (2021b). Building Envelope Prefabricated with 3D Printing Technology. Sustainability 13. https://doi.org/10.3390/su13168923 es_ES
dc.description.references Xu, X., Lin, X., Pan, X., Ji, T., Liang, Y., Zhang, H., (2020). Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement. Constr Build Mater 235, 117544. https://doi.org/10.1016/j.conbuildmat.2019.117544 es_ES
dc.description.references Zhang, H., Xiao, J., (2021). Plastic shrinkage and cracking of 3D printed mortar with recycled sand. Constr Build Mater 302, 124405. https://doi.org/10.1016/J.CONBUILDMAT.2021.124405 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem