Mostrar el registro sencillo del ítem
dc.contributor.author | Macías, Sergio | es_ES |
dc.date.accessioned | 2023-04-26T12:26:10Z | |
dc.date.available | 2023-04-26T12:26:10Z | |
dc.date.issued | 2023-04-05 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/192970 | |
dc.description.abstract | [EN] We introduce the notion of uniformly refinable map for compact, Hausdorff spaces, as a generalization of refinable maps originallydefined for metric continua by Jo Ford (Heath) and Jack W. Rogers, Jr., Refinable maps, Colloq. Math., 39 (1978), 263-269. | es_ES |
dc.description.abstract | [ES] Introducimos la noción de función uniformemente refinable para espacios compactos y de Hausdorff, como una generalización de las funciones refinables originalmente definidas para continuos métricos por Jo Ford (Heath) y Jack W. Rogers, Jr., Refinable maps, Colloq. Math., 39 (1978), 263-269. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Aposyndetic continuum | es_ES |
dc.subject | Compact Hausdorff space | es_ES |
dc.subject | Hausdorff continuum | es_ES |
dc.subject | Metric continuum | es_ES |
dc.subject | Refinable map | es_ES |
dc.subject | Uniformity | es_ES |
dc.subject | Uniformly monotonely refinable map | es_ES |
dc.subject | Uniformly refinable map | es_ES |
dc.subject | Set functions T and K | es_ES |
dc.title | Uniformly refinable maps | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.17345 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Macías, S. (2023). Uniformly refinable maps. Applied General Topology. 24(1):59-81. https://doi.org/10.4995/agt.2023.17345 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.17345 | es_ES |
dc.description.upvformatpinicio | 59 | es_ES |
dc.description.upvformatpfin | 81 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17345 | es_ES |
dc.description.references | F. Barragán, Induced maps on n-fold symmetric products suspensions, Topology Appl. 158 (2011), 1192-1205. https://doi.org/10.1016/j.topol.2011.04.006 | es_ES |
dc.description.references | R. L. Carlisle, Monotone Maps and ε-Maps Between Graphs, Ph. D. Dissertation, Emory University, 1972. | es_ES |
dc.description.references | D. Cichon, P. Krupski and K. Omiljanowski, Refinable and monotone maps revisited, Topology Appl. 155 (2008), 207-212. https://doi.org/10.1016/j.topol.2007.09.012 | es_ES |
dc.description.references | R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. | es_ES |
dc.description.references | J. Ford (Heath) and J. W. Rogers, Jr., Refinable maps, Colloq. Math. 39 (1978), 263-269. https://doi.org/10.4064/cm-39-2-263-269 | es_ES |
dc.description.references | E. E. Grace, Refinable graphs are near homeomorphisms, Topology Proc. 2 (1977), 139-149. | es_ES |
dc.description.references | H. Hosokawa, Aposydesis and coherence of continua under refinable maps, Tsukuba J. Math. 7 (1983), 367-372. https://doi.org/10.21099/tkbjm/1496159832 | es_ES |
dc.description.references | H. Hosokawa, A restriction of a refinable mapping, Bull. Tokyo Gakugei Univ. (4) 43 (1991), 1-4. | es_ES |
dc.description.references | F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. https://doi.org/10.2307/2372339 | es_ES |
dc.description.references | F. B. Jones, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137-151. https://doi.org/10.1090/S0002-9904-1952-09582-3 | es_ES |
dc.description.references | H. Kato, Concerning a property of J. L. Kelley and refinable maps, Math. Japan. 31 (1986), 711-719. | es_ES |
dc.description.references | K. Kuratowski, Topology, Vol. 2, English transl., Academic Press, New York; PWN, Warsaw, 1968. | es_ES |
dc.description.references | S. Macías, Topics on Continua, 2nd Edition, Springer-Cham, 2018. https://doi.org/10.1007/978-3-319-90902-8 | es_ES |
dc.description.references | S. Macías, Set Function T: An Account on F. B. Jones' Contributions to Topology, Developments in Mathematics 67, Springer, 2021. https://doi.org/10.1007/978-3-030-65081-0 | es_ES |
dc.description.references | J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Topology Proc. 24 (1999), 203-213. | es_ES |
dc.description.references | A. McCluskey and B. McMaster, Undergraduate Topology, Oxford University Press, 2014. | es_ES |
dc.description.references | E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. https://doi.org/10.1090/S0002-9947-1951-0042109-4 | es_ES |
dc.description.references | A. K. Misra, A note on arcs in hyperspaces, Acta Math. Hung. 45 (1985), 285-288. https://doi.org/10.1007/BF01957022 | es_ES |
dc.description.references | S. Mrówka, On the convergence of nets of sets, Fund. Math. 45 (1958), 237-246. https://doi.org/10.4064/fm-45-1-237-246 | es_ES |
dc.description.references | R. H. Songenfrey, Concerning continua irreducible about npoints, American J. Math. 68 (1946), 667-671. https://doi.org/10.2307/2371790 | es_ES |