- -

Uniformly refinable maps

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uniformly refinable maps

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Macías, Sergio es_ES
dc.date.accessioned 2023-04-26T12:26:10Z
dc.date.available 2023-04-26T12:26:10Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/192970
dc.description.abstract [EN] We introduce the notion of uniformly refinable map for compact, Hausdorff spaces, as a generalization of refinable maps originallydefined for metric continua by Jo Ford (Heath) and Jack W. Rogers, Jr., Refinable maps, Colloq. Math., 39 (1978), 263-269. es_ES
dc.description.abstract [ES] Introducimos la noción de función uniformemente refinable para espacios compactos y de Hausdorff, como una generalización de las funciones refinables originalmente definidas para continuos  métricos por Jo Ford (Heath) y Jack W. Rogers, Jr., Refinable maps, Colloq. Math., 39 (1978), 263-269. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Aposyndetic continuum es_ES
dc.subject Compact Hausdorff space es_ES
dc.subject Hausdorff continuum es_ES
dc.subject Metric continuum es_ES
dc.subject Refinable map es_ES
dc.subject Uniformity es_ES
dc.subject Uniformly monotonely refinable map es_ES
dc.subject Uniformly refinable map es_ES
dc.subject Set functions T and K es_ES
dc.title Uniformly refinable maps es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.17345
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Macías, S. (2023). Uniformly refinable maps. Applied General Topology. 24(1):59-81. https://doi.org/10.4995/agt.2023.17345 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.17345 es_ES
dc.description.upvformatpinicio 59 es_ES
dc.description.upvformatpfin 81 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17345 es_ES
dc.description.references F. Barragán, Induced maps on n-fold symmetric products suspensions, Topology Appl. 158 (2011), 1192-1205. https://doi.org/10.1016/j.topol.2011.04.006 es_ES
dc.description.references R. L. Carlisle, Monotone Maps and ε-Maps Between Graphs, Ph. D. Dissertation, Emory University, 1972. es_ES
dc.description.references D. Cichon, P. Krupski and K. Omiljanowski, Refinable and monotone maps revisited, Topology Appl. 155 (2008), 207-212. https://doi.org/10.1016/j.topol.2007.09.012 es_ES
dc.description.references R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. es_ES
dc.description.references J. Ford (Heath) and J. W. Rogers, Jr., Refinable maps, Colloq. Math. 39 (1978), 263-269. https://doi.org/10.4064/cm-39-2-263-269 es_ES
dc.description.references E. E. Grace, Refinable graphs are near homeomorphisms, Topology Proc. 2 (1977), 139-149. es_ES
dc.description.references H. Hosokawa, Aposydesis and coherence of continua under refinable maps, Tsukuba J. Math. 7 (1983), 367-372. https://doi.org/10.21099/tkbjm/1496159832 es_ES
dc.description.references H. Hosokawa, A restriction of a refinable mapping, Bull. Tokyo Gakugei Univ. (4) 43 (1991), 1-4. es_ES
dc.description.references F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. https://doi.org/10.2307/2372339 es_ES
dc.description.references F. B. Jones, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137-151. https://doi.org/10.1090/S0002-9904-1952-09582-3 es_ES
dc.description.references H. Kato, Concerning a property of J. L. Kelley and refinable maps, Math. Japan. 31 (1986), 711-719. es_ES
dc.description.references K. Kuratowski, Topology, Vol. 2, English transl., Academic Press, New York; PWN, Warsaw, 1968. es_ES
dc.description.references S. Macías, Topics on Continua, 2nd Edition, Springer-Cham, 2018. https://doi.org/10.1007/978-3-319-90902-8 es_ES
dc.description.references S. Macías, Set Function T: An Account on F. B. Jones' Contributions to Topology, Developments in Mathematics 67, Springer, 2021. https://doi.org/10.1007/978-3-030-65081-0 es_ES
dc.description.references J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Topology Proc. 24 (1999), 203-213. es_ES
dc.description.references A. McCluskey and B. McMaster, Undergraduate Topology, Oxford University Press, 2014. es_ES
dc.description.references E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. https://doi.org/10.1090/S0002-9947-1951-0042109-4 es_ES
dc.description.references A. K. Misra, A note on arcs in hyperspaces, Acta Math. Hung. 45 (1985), 285-288. https://doi.org/10.1007/BF01957022 es_ES
dc.description.references S. Mrówka, On the convergence of nets of sets, Fund. Math. 45 (1958), 237-246. https://doi.org/10.4064/fm-45-1-237-246 es_ES
dc.description.references R. H. Songenfrey, Concerning continua irreducible about npoints, American J. Math. 68 (1946), 667-671. https://doi.org/10.2307/2371790 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem