Mostrar el registro sencillo del ítem
dc.contributor.author | Kočinac, Ljubisa D.R | es_ES |
dc.contributor.author | Mukhamadiev, F. G. | es_ES |
dc.contributor.author | Sadullaev, A. K. | es_ES |
dc.contributor.author | Meyliev, Sh. U. | es_ES |
dc.date.accessioned | 2023-05-02T06:47:36Z | |
dc.date.available | 2023-05-02T06:47:36Z | |
dc.date.issued | 2023-04-05 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/193025 | |
dc.description.abstract | [EN] In this paper the network-type properties (network, cs−network, cs∗−network, cn−network and ck−network) of the space SPn GX of Gpermutation degree of X are studied. It is proved that: (1) If X is a T1-space that has a network of cardinality ≤ κ, then SPn GX has a network of cardinality ≤ κ; (2) If X is a T1-space that has a cs-network (resp. cs∗-network) of cardinality ≤ κ, then SPn GX has a cs-network (resp. cs∗-network) of cardinality ≤ κ; (3) If X is a T1-space that has a cn-network (resp. ck-network) of cardinality ≤ κ, then SPn GX has a cn-network (resp. ck−network) of cardinality ≤ κ. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Functor of permutation degree | es_ES |
dc.subject | Network | es_ES |
dc.subject | Cs-network | es_ES |
dc.subject | Cn-network | es_ES |
dc.subject | Ck-network | es_ES |
dc.subject | Cs*-network | es_ES |
dc.title | Some network-type properties of the space of G-permutation degree | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.18985 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kočinac, LD.; Mukhamadiev, FG.; Sadullaev, AK.; Meyliev, SU. (2023). Some network-type properties of the space of G-permutation degree. Applied General Topology. 24(1):229-237. https://doi.org/10.4995/agt.2023.18985 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.18985 | es_ES |
dc.description.upvformatpinicio | 229 | es_ES |
dc.description.upvformatpfin | 237 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\18985 | es_ES |
dc.description.references | R. B. Beshimov, Some properties of the functor $O_{beta}$, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5 | es_ES |
dc.description.references | R. B. Beshimov, D. N. Georgiou and N. K. Mamadaliev, On τ-nounded spaces and hyperspaces, Filomat 36, no. 1 (2022), 187-193. https://doi.org/10.2298/FIL2201187B | es_ES |
dc.description.references | R. B. Beshimov, D. N. Georgiou and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566 | es_ES |
dc.description.references | R. B. Beshimov and D. T. Safarova, Some topological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021), 2744-2753. https://doi.org/10.1134/S1995080221120088 | es_ES |
dc.description.references | R. Engelking, General Topology (Heldermannn, Berlin, 1989). | es_ES |
dc.description.references | V. V. Fedorchuk, Covariant functors in the category of compacta absolute retracts and Q-manifolds, Russ. Math. Surv. 36 (1981), 211-233. https://doi.org/10.1070/RM1981v036n03ABEH004251 | es_ES |
dc.description.references | V. V. Fedorchuk and V. V. Filippov, Topology of Hyperspaces and its Applications, Znanie, Moscow, 1989. (In Russian). | es_ES |
dc.description.references | S. S. Gabriyelyan and J. Kakol, On $mathfrak{B}$-spaces and related concepts, Topology Appl. 191 (2015), 178-198. https://doi.org/10.1016/j.topol.2015.05.085 | es_ES |
dc.description.references | Lj. D. R. Kočinac, Closure properties of function spaces, Appl. Gen. Topol. 4 (2003), 255-261. https://doi.org/10.4995/agt.2003.2030 | es_ES |
dc.description.references | Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11 (2022), 290. https://doi.org/10.3390/axioms11060290 | es_ES |
dc.description.references | Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Tightness-type properties of the space of permutation degree, Mathematics 10 (2022), 3341. https://doi.org/10.3390/math10183341 | es_ES |
dc.description.references | Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36, no. 20 (2022), 7059-7066. https://doi.org/10.20944/preprints202208.0386.v1 | es_ES |
dc.description.references | Z. Li, Q. Li and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15-21. | es_ES |
dc.description.references | Z. Li, F. Lin and C. Liu, Networks on free topological groups, Topology Appl. 180 (2015), 186-198. https://doi.org/10.1016/j.topol.2014.11.016 | es_ES |
dc.description.references | F. G. Mukhamadiev, On certain cardinal properties of the $N_{tau}^{varphi}$-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5 | es_ES |
dc.description.references | T. K. Yuldashev and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011 | es_ES |
dc.description.references | T. K. Yuldashev and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398 | es_ES |