- -

Some network-type properties of the space of G-permutation degree

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Some network-type properties of the space of G-permutation degree

Show simple item record

Files in this item

dc.contributor.author Kočinac, Ljubisa D.R es_ES
dc.contributor.author Mukhamadiev, F. G. es_ES
dc.contributor.author Sadullaev, A. K. es_ES
dc.contributor.author Meyliev, Sh. U. es_ES
dc.date.accessioned 2023-05-02T06:47:36Z
dc.date.available 2023-05-02T06:47:36Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/193025
dc.description.abstract [EN] In this paper the network-type properties (network, cs−network, cs∗−network, cn−network and ck−network) of the space SPn GX of Gpermutation degree of X are studied. It is proved that: (1) If X is a T1-space that has a network of cardinality ≤ κ, then SPn GX has a network of cardinality ≤ κ; (2) If X is a T1-space that has a cs-network (resp. cs∗-network) of cardinality ≤ κ, then SPn GX has a cs-network (resp. cs∗-network) of cardinality ≤ κ; (3) If X is a T1-space that has a cn-network (resp. ck-network) of cardinality ≤ κ, then SPn GX has a cn-network (resp. ck−network) of cardinality ≤ κ. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Functor of permutation degree es_ES
dc.subject Network es_ES
dc.subject Cs-network es_ES
dc.subject Cn-network es_ES
dc.subject Ck-network es_ES
dc.subject Cs*-network es_ES
dc.title Some network-type properties of the space of G-permutation degree es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18985
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kočinac, LD.; Mukhamadiev, FG.; Sadullaev, AK.; Meyliev, SU. (2023). Some network-type properties of the space of G-permutation degree. Applied General Topology. 24(1):229-237. https://doi.org/10.4995/agt.2023.18985 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18985 es_ES
dc.description.upvformatpinicio 229 es_ES
dc.description.upvformatpfin 237 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18985 es_ES
dc.description.references R. B. Beshimov, Some properties of the functor $O_{beta}$, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5 es_ES
dc.description.references R. B. Beshimov, D. N. Georgiou and N. K. Mamadaliev, On τ-nounded spaces and hyperspaces, Filomat 36, no. 1 (2022), 187-193. https://doi.org/10.2298/FIL2201187B es_ES
dc.description.references R. B. Beshimov, D. N. Georgiou and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566 es_ES
dc.description.references R. B. Beshimov and D. T. Safarova, Some topological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021), 2744-2753. https://doi.org/10.1134/S1995080221120088 es_ES
dc.description.references R. Engelking, General Topology (Heldermannn, Berlin, 1989). es_ES
dc.description.references V. V. Fedorchuk, Covariant functors in the category of compacta absolute retracts and Q-manifolds, Russ. Math. Surv. 36 (1981), 211-233. https://doi.org/10.1070/RM1981v036n03ABEH004251 es_ES
dc.description.references V. V. Fedorchuk and V. V. Filippov, Topology of Hyperspaces and its Applications, Znanie, Moscow, 1989. (In Russian). es_ES
dc.description.references S. S. Gabriyelyan and J. Kakol, On $mathfrak{B}$-spaces and related concepts, Topology Appl. 191 (2015), 178-198. https://doi.org/10.1016/j.topol.2015.05.085 es_ES
dc.description.references Lj. D. R. Kočinac, Closure properties of function spaces, Appl. Gen. Topol. 4 (2003), 255-261. https://doi.org/10.4995/agt.2003.2030 es_ES
dc.description.references Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11 (2022), 290. https://doi.org/10.3390/axioms11060290 es_ES
dc.description.references Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Tightness-type properties of the space of permutation degree, Mathematics 10 (2022), 3341. https://doi.org/10.3390/math10183341 es_ES
dc.description.references Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36, no. 20 (2022), 7059-7066. https://doi.org/10.20944/preprints202208.0386.v1 es_ES
dc.description.references Z. Li, Q. Li and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15-21. es_ES
dc.description.references Z. Li, F. Lin and C. Liu, Networks on free topological groups, Topology Appl. 180 (2015), 186-198. https://doi.org/10.1016/j.topol.2014.11.016 es_ES
dc.description.references F. G. Mukhamadiev, On certain cardinal properties of the $N_{tau}^{varphi}$-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5 es_ES
dc.description.references T. K. Yuldashev and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011 es_ES
dc.description.references T. K. Yuldashev and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398 es_ES


This item appears in the following Collection(s)

Show simple item record