dc.contributor.author |
Kočinac, Ljubisa D.R
|
es_ES |
dc.contributor.author |
Mukhamadiev, F. G.
|
es_ES |
dc.contributor.author |
Sadullaev, A. K.
|
es_ES |
dc.contributor.author |
Meyliev, Sh. U.
|
es_ES |
dc.date.accessioned |
2023-05-02T06:47:36Z |
|
dc.date.available |
2023-05-02T06:47:36Z |
|
dc.date.issued |
2023-04-05 |
|
dc.identifier.issn |
1576-9402 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/193025 |
|
dc.description.abstract |
[EN] In this paper the network-type properties (network, cs−network, cs∗−network, cn−network and ck−network) of the space SPn GX of Gpermutation degree of X are studied. It is proved that: (1) If X is a T1-space that has a network of cardinality ≤ κ, then SPn GX has a network of cardinality ≤ κ; (2) If X is a T1-space that has a cs-network (resp. cs∗-network) of cardinality ≤ κ, then SPn GX has a cs-network (resp. cs∗-network) of cardinality ≤ κ; (3) If X is a T1-space that has a cn-network (resp. ck-network) of cardinality ≤ κ, then SPn
GX has a cn-network (resp. ck−network) of cardinality ≤ κ. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Universitat Politècnica de València |
es_ES |
dc.relation.ispartof |
Applied General Topology |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Functor of permutation degree |
es_ES |
dc.subject |
Network |
es_ES |
dc.subject |
Cs-network |
es_ES |
dc.subject |
Cn-network |
es_ES |
dc.subject |
Ck-network |
es_ES |
dc.subject |
Cs*-network |
es_ES |
dc.title |
Some network-type properties of the space of G-permutation degree |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.4995/agt.2023.18985 |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.description.bibliographicCitation |
Kočinac, LD.; Mukhamadiev, FG.; Sadullaev, AK.; Meyliev, SU. (2023). Some network-type properties of the space of G-permutation degree. Applied General Topology. 24(1):229-237. https://doi.org/10.4995/agt.2023.18985 |
es_ES |
dc.description.accrualMethod |
OJS |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.4995/agt.2023.18985 |
es_ES |
dc.description.upvformatpinicio |
229 |
es_ES |
dc.description.upvformatpfin |
237 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
24 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.identifier.eissn |
1989-4147 |
|
dc.relation.pasarela |
OJS\18985 |
es_ES |
dc.description.references |
R. B. Beshimov, Some properties of the functor $O_{beta}$, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5 |
es_ES |
dc.description.references |
R. B. Beshimov, D. N. Georgiou and N. K. Mamadaliev, On τ-nounded spaces and hyperspaces, Filomat 36, no. 1 (2022), 187-193. https://doi.org/10.2298/FIL2201187B |
es_ES |
dc.description.references |
R. B. Beshimov, D. N. Georgiou and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566 |
es_ES |
dc.description.references |
R. B. Beshimov and D. T. Safarova, Some topological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021), 2744-2753. https://doi.org/10.1134/S1995080221120088 |
es_ES |
dc.description.references |
R. Engelking, General Topology (Heldermannn, Berlin, 1989). |
es_ES |
dc.description.references |
V. V. Fedorchuk, Covariant functors in the category of compacta absolute retracts and Q-manifolds, Russ. Math. Surv. 36 (1981), 211-233. https://doi.org/10.1070/RM1981v036n03ABEH004251 |
es_ES |
dc.description.references |
V. V. Fedorchuk and V. V. Filippov, Topology of Hyperspaces and its Applications, Znanie, Moscow, 1989. (In Russian). |
es_ES |
dc.description.references |
S. S. Gabriyelyan and J. Kakol, On $mathfrak{B}$-spaces and related concepts, Topology Appl. 191 (2015), 178-198. https://doi.org/10.1016/j.topol.2015.05.085 |
es_ES |
dc.description.references |
Lj. D. R. Kočinac, Closure properties of function spaces, Appl. Gen. Topol. 4 (2003), 255-261. https://doi.org/10.4995/agt.2003.2030 |
es_ES |
dc.description.references |
Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11 (2022), 290. https://doi.org/10.3390/axioms11060290 |
es_ES |
dc.description.references |
Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Tightness-type properties of the space of permutation degree, Mathematics 10 (2022), 3341. https://doi.org/10.3390/math10183341 |
es_ES |
dc.description.references |
Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36, no. 20 (2022), 7059-7066. https://doi.org/10.20944/preprints202208.0386.v1 |
es_ES |
dc.description.references |
Z. Li, Q. Li and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15-21. |
es_ES |
dc.description.references |
Z. Li, F. Lin and C. Liu, Networks on free topological groups, Topology Appl. 180 (2015), 186-198. https://doi.org/10.1016/j.topol.2014.11.016 |
es_ES |
dc.description.references |
F. G. Mukhamadiev, On certain cardinal properties of the $N_{tau}^{varphi}$-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5 |
es_ES |
dc.description.references |
T. K. Yuldashev and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011 |
es_ES |
dc.description.references |
T. K. Yuldashev and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398 |
es_ES |