Mostrar el registro sencillo del ítem
dc.contributor.author | Taş, Nihal | es_ES |
dc.date.accessioned | 2023-05-02T06:56:05Z | |
dc.date.available | 2023-05-02T06:56:05Z | |
dc.date.issued | 2023-04-05 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/193026 | |
dc.description.abstract | [EN] In this paper, we investigate new solutions to the Rhoades’ discontinuity problem on the existence of a self-mapping which has a fixed point but is not continuous at the fixed point on metric spaces. To do this, we use the number defined as n(x,y)=[d(x,y)]β[d(x,Ty)]α[d(x,Ty)]γ[(d(x,Ty)+d(x,Ty))/2]1−α−β−γ, where α , β , γ ∈ ( 0,1 ) with α + β + γ < 1 and some interpolative type contractive conditions. Also, we investigate some geometric properties of Fix(T) under some interpolative type contractions and prove some fixed-disc (resp. fixed-circle) results. Finally, we present a new application to the discontinuous activation functions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Rhoades' open problem | es_ES |
dc.subject | Fixed-circle problem | es_ES |
dc.subject | Interpolative type contractive condition | es_ES |
dc.title | Interpolative contractions and discontinuity at fixed point | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.18552 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Taş, N. (2023). Interpolative contractions and discontinuity at fixed point. Applied General Topology. 24(1):145-156. https://doi.org/10.4995/agt.2023.18552 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.18552 | es_ES |
dc.description.upvformatpinicio | 145 | es_ES |
dc.description.upvformatpfin | 156 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\18552 | es_ES |
dc.description.references | H. Aydi, E. Karapinar and S. Radenovic, Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions, RACSAM 107 (2013), 339-353. https://doi.org/10.1007/s13398-012-0077-3 | es_ES |
dc.description.references | R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053 | es_ES |
dc.description.references | R. K. Bisht and R. P. Pant, Contractive definitions and discontinuity at fixed point, Appl. Gen. Topol. 18, no. 1 (2017), 173-182. https://doi.org/10.4995/agt.2017.6713 | es_ES |
dc.description.references | R. K. Bisht and N. Hussain, A note on convex contraction mappings and discontinuity at fixed point, J. Math. Anal. 8, no. 4 (2017), 90-96. | es_ES |
dc.description.references | R. K. Bisht and V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19, no. 1 (2018), 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06 | es_ES |
dc.description.references | R. K. Bisht, An overview of the emergence of weaker continuity notions, various classes of contractive mappings and related fixed point theorems, J. Fixed Point Theory Appl. 25 (2023), 11. https://doi.org/10.1007/s11784-022-01022-y | es_ES |
dc.description.references | D. A. Findlay, Training networks with discontinuous activation functions, 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313). IET, 1989. | es_ES |
dc.description.references | E. Karapınar and B. Samet, Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012), Article ID 793486, 17 pages. https://doi.org/10.1155/2012/793486 | es_ES |
dc.description.references | E. Karapınar, H. Aydi and Z. D. Mitrovic, On interpolative Boyd-Wong and Matkowski type contractions, TWMS J. Pure Appl. Math. 11, no. 2 (2020), 204-212. | es_ES |
dc.description.references | N. Mlaiki, N. Özgür and N. Taş, New fixed-circle results related to $F_{c}$-contractive and $F_{c}$-expanding mappings on metric spaces, https://arxiv.org/abs/2101.10770. | es_ES |
dc.description.references | N. Y. Özgür and N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, no. 4 (2019), 1433-1449. https://doi.org/10.1007/s40840-017-0555-z | es_ES |
dc.description.references | N. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43, no. 6 (2019), 2794-2805. https://doi.org/10.3906/mat-1812-44 | es_ES |
dc.description.references | N. Özgür and N. Taş, Geometric properties of fixed points and simulation functions, https://arxiv.org/abs/2102.05417. | es_ES |
dc.description.references | R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289. https://doi.org/10.1006/jmaa.1999.6560 | es_ES |
dc.description.references | A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31, no. 11 (2017), 3501-3506. https://doi.org/10.2298/FIL1711501P | es_ES |
dc.description.references | R. P. Pant, N. Y. Özgür and N. Taş, Discontinuity at fixed points with applications, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), 571-589. https://doi.org/10.36045/bbms/1576206358 | es_ES |
dc.description.references | R. P. Pant, N. Y. Özgür and N. Taş, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43 (2020), 499-517. https://doi.org/10.1007/s40840-018-0698-6 | es_ES |
dc.description.references | R. P. Pant, N. Özgür, N. Taş, A. Pant and M. C. Joshi, New results on discontinuity at fixed point, J. Fixed Point Theory Appl. 22 (2020), 39. https://doi.org/10.1007/s11784-020-0765-0 | es_ES |
dc.description.references | B. E. Rhoades, Contractive definitions and continuity, Contemp. Math. 72 (1988), 233-245. https://doi.org/10.1090/conm/072/956495 | es_ES |
dc.description.references | N. Taş , Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turkish J. Math. 44, no. 4 (2020), 1330-1344. https://doi.org/10.3906/mat-1911-18 | es_ES |