- -

Interpolative contractions and discontinuity at fixed point

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interpolative contractions and discontinuity at fixed point

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Taş, Nihal es_ES
dc.date.accessioned 2023-05-02T06:56:05Z
dc.date.available 2023-05-02T06:56:05Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/193026
dc.description.abstract [EN] In this paper, we investigate new solutions to the Rhoades’ discontinuity problem on the existence of a self-mapping which has a fixed point but is not continuous at the fixed point on metric spaces. To do this, we use the number defined as n(x,y)=[d(x,y)]β[d(x,Ty)]α[d(x,Ty)]γ[(d(x,Ty)+d(x,Ty))/2]1−α−β−γ, where α , β , γ ∈ ( 0,1 ) with α + β + γ < 1 and some interpolative type contractive conditions. Also, we investigate some geometric properties of Fix(T) under some interpolative type contractions and prove some fixed-disc (resp. fixed-circle) results. Finally, we present a new application to the discontinuous activation functions. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Rhoades' open problem es_ES
dc.subject Fixed-circle problem es_ES
dc.subject Interpolative type contractive condition es_ES
dc.title Interpolative contractions and discontinuity at fixed point es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18552
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Taş, N. (2023). Interpolative contractions and discontinuity at fixed point. Applied General Topology. 24(1):145-156. https://doi.org/10.4995/agt.2023.18552 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18552 es_ES
dc.description.upvformatpinicio 145 es_ES
dc.description.upvformatpfin 156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18552 es_ES
dc.description.references H. Aydi, E. Karapinar and S. Radenovic, Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions, RACSAM 107 (2013), 339-353. https://doi.org/10.1007/s13398-012-0077-3 es_ES
dc.description.references R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053 es_ES
dc.description.references R. K. Bisht and R. P. Pant, Contractive definitions and discontinuity at fixed point, Appl. Gen. Topol. 18, no. 1 (2017), 173-182. https://doi.org/10.4995/agt.2017.6713 es_ES
dc.description.references R. K. Bisht and N. Hussain, A note on convex contraction mappings and discontinuity at fixed point, J. Math. Anal. 8, no. 4 (2017), 90-96. es_ES
dc.description.references R. K. Bisht and V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19, no. 1 (2018), 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06 es_ES
dc.description.references R. K. Bisht, An overview of the emergence of weaker continuity notions, various classes of contractive mappings and related fixed point theorems, J. Fixed Point Theory Appl. 25 (2023), 11. https://doi.org/10.1007/s11784-022-01022-y es_ES
dc.description.references D. A. Findlay, Training networks with discontinuous activation functions, 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313). IET, 1989. es_ES
dc.description.references E. Karapınar and B. Samet, Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012), Article ID 793486, 17 pages. https://doi.org/10.1155/2012/793486 es_ES
dc.description.references E. Karapınar, H. Aydi and Z. D. Mitrovic, On interpolative Boyd-Wong and Matkowski type contractions, TWMS J. Pure Appl. Math. 11, no. 2 (2020), 204-212. es_ES
dc.description.references N. Mlaiki, N. Özgür and N. Taş, New fixed-circle results related to $F_{c}$-contractive and $F_{c}$-expanding mappings on metric spaces, https://arxiv.org/abs/2101.10770. es_ES
dc.description.references N. Y. Özgür and N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, no. 4 (2019), 1433-1449. https://doi.org/10.1007/s40840-017-0555-z es_ES
dc.description.references N. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43, no. 6 (2019), 2794-2805. https://doi.org/10.3906/mat-1812-44 es_ES
dc.description.references N. Özgür and N. Taş, Geometric properties of fixed points and simulation functions, https://arxiv.org/abs/2102.05417. es_ES
dc.description.references R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289. https://doi.org/10.1006/jmaa.1999.6560 es_ES
dc.description.references A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31, no. 11 (2017), 3501-3506. https://doi.org/10.2298/FIL1711501P es_ES
dc.description.references R. P. Pant, N. Y. Özgür and N. Taş, Discontinuity at fixed points with applications, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), 571-589. https://doi.org/10.36045/bbms/1576206358 es_ES
dc.description.references R. P. Pant, N. Y. Özgür and N. Taş, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43 (2020), 499-517. https://doi.org/10.1007/s40840-018-0698-6 es_ES
dc.description.references R. P. Pant, N. Özgür, N. Taş, A. Pant and M. C. Joshi, New results on discontinuity at fixed point, J. Fixed Point Theory Appl. 22 (2020), 39. https://doi.org/10.1007/s11784-020-0765-0 es_ES
dc.description.references B. E. Rhoades, Contractive definitions and continuity, Contemp. Math. 72 (1988), 233-245. https://doi.org/10.1090/conm/072/956495 es_ES
dc.description.references N. Taş , Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turkish J. Math. 44, no. 4 (2020), 1330-1344. https://doi.org/10.3906/mat-1911-18 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem