- -

Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test

Mostrar el registro completo del ítem

Sebera, V.; Redón-Santafé, M.; Brabec, M.; Decky, D.; Cermak, P.; Tippner, J.; Milch, J. (2019). Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test. Holzforschung. 73(7):663-672. https://doi.org/10.1515/hf-2018-0188

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193089

Ficheros en el ítem

Metadatos del ítem

Título: Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test
Autor: Sebera, Václav Redón-Santafé, Miguel Brabec, Martin Decky, David Cermak, Petr Tippner, Jan Milch, Jaromír
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The fracture properties of thermally modified beech (Fagus sylvatica) wood (TMW) at 180 degrees and 200 degrees C were evaluated in mode II using the three-point end-notched flexure (3ENF) scheme assisted by ...[+]
Palabras clave: Beech , Brittleness of wood,cohesive law , Compliance-based beam method (CBBM) , Compressive elastic modulus , Digital image correlation (DIC) , Equivalent crack length approach (ECLA) , Fracture , Mode II , Thermal modification , Thermally modified wood (TMW) , Three-point end-notched flexure (3ENF)
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Holzforschung. (issn: 0018-3830 )
DOI: 10.1515/hf-2018-0188
Editorial:
Walter de Gruyter GmbH
Versión del editor: https://doi.org/10.1515/hf-2018-0188
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/739574/EU
info:eu-repo/grantAgreement/COST//FP1407/
info:eu-repo/grantAgreement/MENDELU//LDF_PSV_2016015/
Agradecimientos:
The authors would like to thank COST Action FP1407 (Funder Id: https://dx.doi.org/10.13039/501100000921), the European Commission for funding the InnoRenew CoE project under the Horizon2020 Widespread-Teaming program (grant ...[+]
Tipo: Artículo

References

Anderson, T. Fracture Mechanics: Fundamentals and Applications. 2nd ed. CRC, Boca Raton, FL, 1995.

Arrese, A., Carbajal, N., Vargas, G., Mujika, F. (2010) A new method of determining mode II R-curve by the End-Notched Flexure test. E. Fr. Mech. 77:51–70.

Borrega, M., Kärenlampi, P.P. (2008) Mechanisches Verhalten von Wärmebehandeltem Fichtenholz (Picea abies) bei Konstanter Holz- und Luftfeuchte [Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity]. Holz Roh Werk. 66:63–69. [+]
Anderson, T. Fracture Mechanics: Fundamentals and Applications. 2nd ed. CRC, Boca Raton, FL, 1995.

Arrese, A., Carbajal, N., Vargas, G., Mujika, F. (2010) A new method of determining mode II R-curve by the End-Notched Flexure test. E. Fr. Mech. 77:51–70.

Borrega, M., Kärenlampi, P.P. (2008) Mechanisches Verhalten von Wärmebehandeltem Fichtenholz (Picea abies) bei Konstanter Holz- und Luftfeuchte [Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity]. Holz Roh Werk. 66:63–69.

Čermák, P., Vahtikari, K., Rautkari, L., Laine, K., Horáček, P., Baar, J. (2016) The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J. Mater. Sci. 51:1504–1511.

de Moura, M.F.S.F., Silva, M.A.L., de Morais, A.B., Morais, J.J.L. (2006) Equivalent crack based mode II fracture characterization of wood. Eng. Fract. Mech. 73:978–993.

Fernandes, R.M.R.P., Chousal, J.A.G., de Moura, M.F.S.F., Xavier, J. (2013) Determination of cohesive laws of composite bonded joints under mode II loading. Composites: Part B 52:269–274.

Hill, C. Wood Modification: Chemical, Thermal and Other Processes, Wiley Series. In: Renewable Resources. John Wiley & Sons, Hoboken, USA, 2006.

Hughes, M., Hill, C., Pfriem, A. (2015) The toughness of hygrothermally modified wood: COST Action FP0904 2010-2014: Thermo-hydro-mechanical wood behavior and processing. Holzforschung 69:851–862.

Jamaaou, A., Pop, O., Dubois, F., Costa, G. (2017) Wedge Splitting Test on Douglas genotypes using an integrated mixed-mode approach. Theor. Appl. Fract. Mec. 91:44–51.

Kutnar, A., Kamke, F., Nairn, J., Sernek, M. (2008) Mode II fracture behavior of bonded viscoelastic thermal compressed wood. Wood Fiber Sci. 40:362–373.

Majano-Majano, A., Hughes, M., Fernandez-Cabo, J.L. (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 46:5–21.

Matsumoto, N., Nairn, J.A. (2009) The fracture toughness of medium density fiberboard (MDF) including the effects of fiber bridging and crack-plane interference. Eng. Fract. Mech. 76:2748–2757.

Méité, M., Dubois, F., Pop, O., Absi, J. (2013) Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling. Eng. Fract. Mech. 105:86–100.

Murata, K., Bachtiar, E.V., Niemz, P. (2017) Determination of mode I and mode II fracture toughness of walnut and cherry in TR and RT crack propagation system by the Arcan test. Holzforschung 71:985–990.

Sandberg, D., Kutnar, A., Mantanis, G. (2017) Wood modification technologies – a review. IForest 10:895–908.

Schuecker, C., Davidson, B.D. (2000) Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination. Compos. Sci. Technol. 60:2137–2146.

Silva, M.A.L., de Moura, M.F.S.F., Morais, J.J.L. (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos. Part A-Appl. S. 37:1334–1344.

Silva, M.A.L., Morais, J.J.L., de Moura, M.F.S.F., Lousada, J.L. (2007) Mode II wood fracture characterization using the ELS test. Eng. Fract. Mech. 74:2133–2147.

Silva, F.G.A., Morais, J.J.L., Dourado, N., Xavier, J., Pereira, F.A.M., De Moura, M.F.S.F. (2014) Determination of cohesive laws in wood bonded joints under mode II loading using the ENF test. Int. J. Adhes. Adhes. 51:54–61.

Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh-Werkst 56:149–153.

Tukiainen, P., Hughes, M. (2016a) The effect of elevated temperature and high moisture content on the fracture behaviour of thermally modified spruce. J. Mat. Sci. 51:1437–1444.

Tukiainen, P., Hughes, M. (2016b) The cellular level mode I fracture behaviour of spruce and birch in the RT crack propagation system. Holzforschung 70:157–165.

Tukiainen, P., Hughes, M. (2016c) The effect of temperature and moisture content on the fracture behaviour of spruce and birch. Holzforschung 70:369–376.

Wang, J., Qiao, P. (2004) Novel beam analysis of end notched flexure specimen for mode-II fracture. Eng. Fract. Mech. 71:219–231.

Wang, W.X., Nakata, M., Takao, Y., Matsubara, T. (2009) Experimental investigation on test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites. Compos. Part A-Appl. 40:1447–1455.

Widmann, R., Fernandez-Cabo, J.L., Steiger, R. (2012) Mechanical properties of thermally modified beech timber for structural purposes. Eur. J. Wood Wood Prod. 70:775–784.

Xavier, J., Morais, J., Dourado, N., De Moura, M.F.S.F. (2011) Measurement of mode I and mode II fracture properties of wood-bonded joints. J. Adhes. Sci. Technol. 25:2881–2895.

Xavier, J., Oliveira, M., Morais, J.J.L., De Moura, M.F.S.F. (2014) Determining mode II cohesive law of Pinus pinaster by combining the end-notched flexure test with digital image correlation. Constr. Build. Mater. 71:109–115.

Yoshihara, H. (2001) Influence of span/depth ratio on the measurement of mode II fracture toughness of wood by end-notched flexure test. J. Wood Sci. 47:8–12.

Yoshihara, H. (2005) Mode II initiation fracture toughness analysis for wood obtained by 3-ENF test. Compos. Sci. Technol. 65:2198–2207.

Yoshihara, H. (2010) Mode I and mode II initiation fracture toughness and resistance curve of medium density fiberboard measured by double cantilever beam and three-point bend end-notched flexure tests. Eng. Fract. Mech. 77:2537–2549.

Yoshihara, H., Ohta, M. (2000) Measurement of mode II fracture toughness of wood by the end-notched flexure test. J. Wood Sci. 46:273–278.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem