Mostrar el registro sencillo del ítem
dc.contributor.author | Sebera, Václav | es_ES |
dc.contributor.author | Redón-Santafé, Miguel | es_ES |
dc.contributor.author | Brabec, Martin | es_ES |
dc.contributor.author | Decky, David | es_ES |
dc.contributor.author | Cermak, Petr | es_ES |
dc.contributor.author | Tippner, Jan | es_ES |
dc.contributor.author | Milch, Jaromír | es_ES |
dc.date.accessioned | 2023-05-03T18:01:56Z | |
dc.date.available | 2023-05-03T18:01:56Z | |
dc.date.issued | 2019-07 | es_ES |
dc.identifier.issn | 0018-3830 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193089 | |
dc.description.abstract | [EN] The fracture properties of thermally modified beech (Fagus sylvatica) wood (TMW) at 180 degrees and 200 degrees C were evaluated in mode II using the three-point end-notched flexure (3ENF) scheme assisted by three-dimensional (3D) stereovision equipment for obtaining displacements and strains. The compliance-based beam method (CBBM) provided the strain energy release rates (G(II)) of TMW and cohesive laws for both native wood (W) and TMW. Based on the CBBM and equivalent crack length approach (ECLA), G(II) was obtained directly from the force-deflection data. The thermal modification (TM) process reduced the compressive strength by 4.4% and increased the compressive elastic modulus by 38.3%, whereas G(II) was reduced substantially by 40.8% and 67.9% at TM180 degrees C and TM200 degrees C, respectively. TM also increased wood brittleness that was visible on the displacement slip reduction. The resulting mean cohesive models can be used for numerical analyses. The fracture properties of TMW have to be taken into consideration for constructional wood application, when cyclic loading may lead to microcracking and material fatigue. | es_ES |
dc.description.sponsorship | The authors would like to thank COST Action FP1407 (Funder Id: https://dx.doi.org/10.13039/501100000921), the European Commission for funding the InnoRenew CoE project under the Horizon2020 Widespread-Teaming program (grant agreement #739574), the Republic of Slovenia for providing support from the European Regional Development Funds, and the financial support provided by the Internal Grant Agency (IGA) of the Faculty of Forestry and Wood Technology, Mendel University in Brno (LDF_PSV_2016015). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Walter de Gruyter GmbH | es_ES |
dc.relation.ispartof | Holzforschung | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Beech | es_ES |
dc.subject | Brittleness of wood,cohesive law | es_ES |
dc.subject | Compliance-based beam method (CBBM) | es_ES |
dc.subject | Compressive elastic modulus | es_ES |
dc.subject | Digital image correlation (DIC) | es_ES |
dc.subject | Equivalent crack length approach (ECLA) | es_ES |
dc.subject | Fracture | es_ES |
dc.subject | Mode II | es_ES |
dc.subject | Thermal modification | es_ES |
dc.subject | Thermally modified wood (TMW) | es_ES |
dc.subject | Three-point end-notched flexure (3ENF) | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.title | Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/hf-2018-0188 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/739574/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//FP1407/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MENDELU//LDF_PSV_2016015/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Sebera, V.; Redón-Santafé, M.; Brabec, M.; Decky, D.; Cermak, P.; Tippner, J.; Milch, J. (2019). Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test. Holzforschung. 73(7):663-672. https://doi.org/10.1515/hf-2018-0188 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/hf-2018-0188 | es_ES |
dc.description.upvformatpinicio | 663 | es_ES |
dc.description.upvformatpfin | 672 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 73 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\395236 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Mendel University in Brno | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Anderson, T. Fracture Mechanics: Fundamentals and Applications. 2nd ed. CRC, Boca Raton, FL, 1995. | es_ES |
dc.description.references | Arrese, A., Carbajal, N., Vargas, G., Mujika, F. (2010) A new method of determining mode II R-curve by the End-Notched Flexure test. E. Fr. Mech. 77:51–70. | es_ES |
dc.description.references | Borrega, M., Kärenlampi, P.P. (2008) Mechanisches Verhalten von Wärmebehandeltem Fichtenholz (Picea abies) bei Konstanter Holz- und Luftfeuchte [Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity]. Holz Roh Werk. 66:63–69. | es_ES |
dc.description.references | Čermák, P., Vahtikari, K., Rautkari, L., Laine, K., Horáček, P., Baar, J. (2016) The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J. Mater. Sci. 51:1504–1511. | es_ES |
dc.description.references | de Moura, M.F.S.F., Silva, M.A.L., de Morais, A.B., Morais, J.J.L. (2006) Equivalent crack based mode II fracture characterization of wood. Eng. Fract. Mech. 73:978–993. | es_ES |
dc.description.references | Fernandes, R.M.R.P., Chousal, J.A.G., de Moura, M.F.S.F., Xavier, J. (2013) Determination of cohesive laws of composite bonded joints under mode II loading. Composites: Part B 52:269–274. | es_ES |
dc.description.references | Hill, C. Wood Modification: Chemical, Thermal and Other Processes, Wiley Series. In: Renewable Resources. John Wiley & Sons, Hoboken, USA, 2006. | es_ES |
dc.description.references | Hughes, M., Hill, C., Pfriem, A. (2015) The toughness of hygrothermally modified wood: COST Action FP0904 2010-2014: Thermo-hydro-mechanical wood behavior and processing. Holzforschung 69:851–862. | es_ES |
dc.description.references | Jamaaou, A., Pop, O., Dubois, F., Costa, G. (2017) Wedge Splitting Test on Douglas genotypes using an integrated mixed-mode approach. Theor. Appl. Fract. Mec. 91:44–51. | es_ES |
dc.description.references | Kutnar, A., Kamke, F., Nairn, J., Sernek, M. (2008) Mode II fracture behavior of bonded viscoelastic thermal compressed wood. Wood Fiber Sci. 40:362–373. | es_ES |
dc.description.references | Majano-Majano, A., Hughes, M., Fernandez-Cabo, J.L. (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 46:5–21. | es_ES |
dc.description.references | Matsumoto, N., Nairn, J.A. (2009) The fracture toughness of medium density fiberboard (MDF) including the effects of fiber bridging and crack-plane interference. Eng. Fract. Mech. 76:2748–2757. | es_ES |
dc.description.references | Méité, M., Dubois, F., Pop, O., Absi, J. (2013) Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling. Eng. Fract. Mech. 105:86–100. | es_ES |
dc.description.references | Murata, K., Bachtiar, E.V., Niemz, P. (2017) Determination of mode I and mode II fracture toughness of walnut and cherry in TR and RT crack propagation system by the Arcan test. Holzforschung 71:985–990. | es_ES |
dc.description.references | Sandberg, D., Kutnar, A., Mantanis, G. (2017) Wood modification technologies – a review. IForest 10:895–908. | es_ES |
dc.description.references | Schuecker, C., Davidson, B.D. (2000) Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination. Compos. Sci. Technol. 60:2137–2146. | es_ES |
dc.description.references | Silva, M.A.L., de Moura, M.F.S.F., Morais, J.J.L. (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos. Part A-Appl. S. 37:1334–1344. | es_ES |
dc.description.references | Silva, M.A.L., Morais, J.J.L., de Moura, M.F.S.F., Lousada, J.L. (2007) Mode II wood fracture characterization using the ELS test. Eng. Fract. Mech. 74:2133–2147. | es_ES |
dc.description.references | Silva, F.G.A., Morais, J.J.L., Dourado, N., Xavier, J., Pereira, F.A.M., De Moura, M.F.S.F. (2014) Determination of cohesive laws in wood bonded joints under mode II loading using the ENF test. Int. J. Adhes. Adhes. 51:54–61. | es_ES |
dc.description.references | Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh-Werkst 56:149–153. | es_ES |
dc.description.references | Tukiainen, P., Hughes, M. (2016a) The effect of elevated temperature and high moisture content on the fracture behaviour of thermally modified spruce. J. Mat. Sci. 51:1437–1444. | es_ES |
dc.description.references | Tukiainen, P., Hughes, M. (2016b) The cellular level mode I fracture behaviour of spruce and birch in the RT crack propagation system. Holzforschung 70:157–165. | es_ES |
dc.description.references | Tukiainen, P., Hughes, M. (2016c) The effect of temperature and moisture content on the fracture behaviour of spruce and birch. Holzforschung 70:369–376. | es_ES |
dc.description.references | Wang, J., Qiao, P. (2004) Novel beam analysis of end notched flexure specimen for mode-II fracture. Eng. Fract. Mech. 71:219–231. | es_ES |
dc.description.references | Wang, W.X., Nakata, M., Takao, Y., Matsubara, T. (2009) Experimental investigation on test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites. Compos. Part A-Appl. 40:1447–1455. | es_ES |
dc.description.references | Widmann, R., Fernandez-Cabo, J.L., Steiger, R. (2012) Mechanical properties of thermally modified beech timber for structural purposes. Eur. J. Wood Wood Prod. 70:775–784. | es_ES |
dc.description.references | Xavier, J., Morais, J., Dourado, N., De Moura, M.F.S.F. (2011) Measurement of mode I and mode II fracture properties of wood-bonded joints. J. Adhes. Sci. Technol. 25:2881–2895. | es_ES |
dc.description.references | Xavier, J., Oliveira, M., Morais, J.J.L., De Moura, M.F.S.F. (2014) Determining mode II cohesive law of Pinus pinaster by combining the end-notched flexure test with digital image correlation. Constr. Build. Mater. 71:109–115. | es_ES |
dc.description.references | Yoshihara, H. (2001) Influence of span/depth ratio on the measurement of mode II fracture toughness of wood by end-notched flexure test. J. Wood Sci. 47:8–12. | es_ES |
dc.description.references | Yoshihara, H. (2005) Mode II initiation fracture toughness analysis for wood obtained by 3-ENF test. Compos. Sci. Technol. 65:2198–2207. | es_ES |
dc.description.references | Yoshihara, H. (2010) Mode I and mode II initiation fracture toughness and resistance curve of medium density fiberboard measured by double cantilever beam and three-point bend end-notched flexure tests. Eng. Fract. Mech. 77:2537–2549. | es_ES |
dc.description.references | Yoshihara, H., Ohta, M. (2000) Measurement of mode II fracture toughness of wood by the end-notched flexure test. J. Wood Sci. 46:273–278. | es_ES |