- -

Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sebera, Václav es_ES
dc.contributor.author Redón-Santafé, Miguel es_ES
dc.contributor.author Brabec, Martin es_ES
dc.contributor.author Decky, David es_ES
dc.contributor.author Cermak, Petr es_ES
dc.contributor.author Tippner, Jan es_ES
dc.contributor.author Milch, Jaromír es_ES
dc.date.accessioned 2023-05-03T18:01:56Z
dc.date.available 2023-05-03T18:01:56Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 0018-3830 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193089
dc.description.abstract [EN] The fracture properties of thermally modified beech (Fagus sylvatica) wood (TMW) at 180 degrees and 200 degrees C were evaluated in mode II using the three-point end-notched flexure (3ENF) scheme assisted by three-dimensional (3D) stereovision equipment for obtaining displacements and strains. The compliance-based beam method (CBBM) provided the strain energy release rates (G(II)) of TMW and cohesive laws for both native wood (W) and TMW. Based on the CBBM and equivalent crack length approach (ECLA), G(II) was obtained directly from the force-deflection data. The thermal modification (TM) process reduced the compressive strength by 4.4% and increased the compressive elastic modulus by 38.3%, whereas G(II) was reduced substantially by 40.8% and 67.9% at TM180 degrees C and TM200 degrees C, respectively. TM also increased wood brittleness that was visible on the displacement slip reduction. The resulting mean cohesive models can be used for numerical analyses. The fracture properties of TMW have to be taken into consideration for constructional wood application, when cyclic loading may lead to microcracking and material fatigue. es_ES
dc.description.sponsorship The authors would like to thank COST Action FP1407 (Funder Id: https://dx.doi.org/10.13039/501100000921), the European Commission for funding the InnoRenew CoE project under the Horizon2020 Widespread-Teaming program (grant agreement #739574), the Republic of Slovenia for providing support from the European Regional Development Funds, and the financial support provided by the Internal Grant Agency (IGA) of the Faculty of Forestry and Wood Technology, Mendel University in Brno (LDF_PSV_2016015). es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Holzforschung es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Beech es_ES
dc.subject Brittleness of wood,cohesive law es_ES
dc.subject Compliance-based beam method (CBBM) es_ES
dc.subject Compressive elastic modulus es_ES
dc.subject Digital image correlation (DIC) es_ES
dc.subject Equivalent crack length approach (ECLA) es_ES
dc.subject Fracture es_ES
dc.subject Mode II es_ES
dc.subject Thermal modification es_ES
dc.subject Thermally modified wood (TMW) es_ES
dc.subject Three-point end-notched flexure (3ENF) es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/hf-2018-0188 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/739574/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//FP1407/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MENDELU//LDF_PSV_2016015/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Sebera, V.; Redón-Santafé, M.; Brabec, M.; Decky, D.; Cermak, P.; Tippner, J.; Milch, J. (2019). Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test. Holzforschung. 73(7):663-672. https://doi.org/10.1515/hf-2018-0188 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/hf-2018-0188 es_ES
dc.description.upvformatpinicio 663 es_ES
dc.description.upvformatpfin 672 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\395236 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Mendel University in Brno es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Anderson, T. Fracture Mechanics: Fundamentals and Applications. 2nd ed. CRC, Boca Raton, FL, 1995. es_ES
dc.description.references Arrese, A., Carbajal, N., Vargas, G., Mujika, F. (2010) A new method of determining mode II R-curve by the End-Notched Flexure test. E. Fr. Mech. 77:51–70. es_ES
dc.description.references Borrega, M., Kärenlampi, P.P. (2008) Mechanisches Verhalten von Wärmebehandeltem Fichtenholz (Picea abies) bei Konstanter Holz- und Luftfeuchte [Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity]. Holz Roh Werk. 66:63–69. es_ES
dc.description.references Čermák, P., Vahtikari, K., Rautkari, L., Laine, K., Horáček, P., Baar, J. (2016) The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J. Mater. Sci. 51:1504–1511. es_ES
dc.description.references de Moura, M.F.S.F., Silva, M.A.L., de Morais, A.B., Morais, J.J.L. (2006) Equivalent crack based mode II fracture characterization of wood. Eng. Fract. Mech. 73:978–993. es_ES
dc.description.references Fernandes, R.M.R.P., Chousal, J.A.G., de Moura, M.F.S.F., Xavier, J. (2013) Determination of cohesive laws of composite bonded joints under mode II loading. Composites: Part B 52:269–274. es_ES
dc.description.references Hill, C. Wood Modification: Chemical, Thermal and Other Processes, Wiley Series. In: Renewable Resources. John Wiley & Sons, Hoboken, USA, 2006. es_ES
dc.description.references Hughes, M., Hill, C., Pfriem, A. (2015) The toughness of hygrothermally modified wood: COST Action FP0904 2010-2014: Thermo-hydro-mechanical wood behavior and processing. Holzforschung 69:851–862. es_ES
dc.description.references Jamaaou, A., Pop, O., Dubois, F., Costa, G. (2017) Wedge Splitting Test on Douglas genotypes using an integrated mixed-mode approach. Theor. Appl. Fract. Mec. 91:44–51. es_ES
dc.description.references Kutnar, A., Kamke, F., Nairn, J., Sernek, M. (2008) Mode II fracture behavior of bonded viscoelastic thermal compressed wood. Wood Fiber Sci. 40:362–373. es_ES
dc.description.references Majano-Majano, A., Hughes, M., Fernandez-Cabo, J.L. (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 46:5–21. es_ES
dc.description.references Matsumoto, N., Nairn, J.A. (2009) The fracture toughness of medium density fiberboard (MDF) including the effects of fiber bridging and crack-plane interference. Eng. Fract. Mech. 76:2748–2757. es_ES
dc.description.references Méité, M., Dubois, F., Pop, O., Absi, J. (2013) Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling. Eng. Fract. Mech. 105:86–100. es_ES
dc.description.references Murata, K., Bachtiar, E.V., Niemz, P. (2017) Determination of mode I and mode II fracture toughness of walnut and cherry in TR and RT crack propagation system by the Arcan test. Holzforschung 71:985–990. es_ES
dc.description.references Sandberg, D., Kutnar, A., Mantanis, G. (2017) Wood modification technologies – a review. IForest 10:895–908. es_ES
dc.description.references Schuecker, C., Davidson, B.D. (2000) Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination. Compos. Sci. Technol. 60:2137–2146. es_ES
dc.description.references Silva, M.A.L., de Moura, M.F.S.F., Morais, J.J.L. (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos. Part A-Appl. S. 37:1334–1344. es_ES
dc.description.references Silva, M.A.L., Morais, J.J.L., de Moura, M.F.S.F., Lousada, J.L. (2007) Mode II wood fracture characterization using the ELS test. Eng. Fract. Mech. 74:2133–2147. es_ES
dc.description.references Silva, F.G.A., Morais, J.J.L., Dourado, N., Xavier, J., Pereira, F.A.M., De Moura, M.F.S.F. (2014) Determination of cohesive laws in wood bonded joints under mode II loading using the ENF test. Int. J. Adhes. Adhes. 51:54–61. es_ES
dc.description.references Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh-Werkst 56:149–153. es_ES
dc.description.references Tukiainen, P., Hughes, M. (2016a) The effect of elevated temperature and high moisture content on the fracture behaviour of thermally modified spruce. J. Mat. Sci. 51:1437–1444. es_ES
dc.description.references Tukiainen, P., Hughes, M. (2016b) The cellular level mode I fracture behaviour of spruce and birch in the RT crack propagation system. Holzforschung 70:157–165. es_ES
dc.description.references Tukiainen, P., Hughes, M. (2016c) The effect of temperature and moisture content on the fracture behaviour of spruce and birch. Holzforschung 70:369–376. es_ES
dc.description.references Wang, J., Qiao, P. (2004) Novel beam analysis of end notched flexure specimen for mode-II fracture. Eng. Fract. Mech. 71:219–231. es_ES
dc.description.references Wang, W.X., Nakata, M., Takao, Y., Matsubara, T. (2009) Experimental investigation on test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites. Compos. Part A-Appl. 40:1447–1455. es_ES
dc.description.references Widmann, R., Fernandez-Cabo, J.L., Steiger, R. (2012) Mechanical properties of thermally modified beech timber for structural purposes. Eur. J. Wood Wood Prod. 70:775–784. es_ES
dc.description.references Xavier, J., Morais, J., Dourado, N., De Moura, M.F.S.F. (2011) Measurement of mode I and mode II fracture properties of wood-bonded joints. J. Adhes. Sci. Technol. 25:2881–2895. es_ES
dc.description.references Xavier, J., Oliveira, M., Morais, J.J.L., De Moura, M.F.S.F. (2014) Determining mode II cohesive law of Pinus pinaster by combining the end-notched flexure test with digital image correlation. Constr. Build. Mater. 71:109–115. es_ES
dc.description.references Yoshihara, H. (2001) Influence of span/depth ratio on the measurement of mode II fracture toughness of wood by end-notched flexure test. J. Wood Sci. 47:8–12. es_ES
dc.description.references Yoshihara, H. (2005) Mode II initiation fracture toughness analysis for wood obtained by 3-ENF test. Compos. Sci. Technol. 65:2198–2207. es_ES
dc.description.references Yoshihara, H. (2010) Mode I and mode II initiation fracture toughness and resistance curve of medium density fiberboard measured by double cantilever beam and three-point bend end-notched flexure tests. Eng. Fract. Mech. 77:2537–2549. es_ES
dc.description.references Yoshihara, H., Ohta, M. (2000) Measurement of mode II fracture toughness of wood by the end-notched flexure test. J. Wood Sci. 46:273–278. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem