Resumen:
|
[EN] Internet and telecom service providers worldwide are facing financial sustainability issues in migrating their existing legacy IPv4 networking system due to backward compatibility issues with the latest generation ...[+]
[EN] Internet and telecom service providers worldwide are facing financial sustainability issues in migrating their existing legacy IPv4 networking system due to backward compatibility issues with the latest generation networking paradigms viz. Internet protocol version 6 (IPv6) and software-defined networking (SDN). Bench marking of existing networking devices is required to identify their status whether the existing running devices are upgradable or need replacement to make them operable with SDN and IPv6 networking so that internet and telecom service providers can properly plan their network migration to optimize capital and operational expenditures for future sustainability. In this paper, we implement "adaptive neuro fuzzy inference system (ANFIS)", a well-known intelligent approach for network device status identification to classify whether a network device is upgradable or requires replacement. Similarly, we establish a knowledge base (KB) system to store the information of device internetwork operating system (IoS)/firmware version, its SDN, and IPv6 support with end-of-life and end-of-support. For input to ANFIS, device performance metrics such as average CPU utilization, throughput, and memory capacity are retrieved and mapped with data from KB. We run the experiment with other well-known classification methods, for example, support vector machine (SVM), fine tree, and liner regression to compare performance results with ANFIS. The comparative results show that the ANFIS-based classification approach is more accurate and optimal than other methods. For service providers with a large number of network devices, this approach assists them to properly classify the device and make a decision for the smooth transitioning to SDN-enabled IPv6 networks.
[-]
|
Agradecimientos:
|
FundingThis research was partially funded by the Norwegian University of Science and Technology, Trondhiem, Norway (NTNU) under Sustainable Engineering Education Project (SEEP) financed by EnPE, University Grant Commission ...[+]
FundingThis research was partially funded by the Norwegian University of Science and Technology, Trondhiem, Norway (NTNU) under Sustainable Engineering Education Project (SEEP) financed by EnPE, University Grant Commission (grant-ID: FRG7475Engg01), Bhaktapur, Nepal, Nepal academy of Science and Technology (NAST), Kathmandu, Nepal, and the U.S. National Science Foundation (NSF). The work of Danda B. Rawat was partly supported by the U.S. National Science Foundation (NSF) under grants CNS 1650831 and HRD 1828811. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the NSF.
[-]
|