- -

Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)

Mostrar el registro completo del ítem

Mazzorana, B.; Bahamondes Rosas, D.; Montecinos, L.; Ruiz-Villanueva, V.; Rojas, I. (2023). Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile). Ingeniería del Agua. 27(2):73-92. https://doi.org/10.4995/ia.2023.18866

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193174

Ficheros en el ítem

Metadatos del ítem

Título: Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)
Otro titulo: Exploring the hydrodynamic response of a highly perturbed river due to volcanic eruptions: the Blanco River, Chaitén (Chile)
Autor: Mazzorana, Bruno Bahamondes Rosas, Diego Montecinos, Liz Ruiz-Villanueva, Virginia Rojas, Iván
Fecha difusión:
Resumen:
[EN] This work explored the hydrodynamic response of the Blanco River to three-phase flows (water, sediment, and wood), in a context of volcanic disturbance. The scarce hydrological information makes the use of traditional ...[+]


[ES] En este trabajo se exploró la respuesta hidrodinámica del Río Blanco ante flujos trifásicos (agua, sedimento y madera), en un contexto de perturbación volcánica. La escasa información hidrológica dificulta el uso de ...[+]
Palabras clave: Chaitén , Hazardouness , Thriphasic flows , Iber , Hydrodynamic sensitivity , Peligrosidad , Flujos trifásicos , Sensibilidad hidrodinámica
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.18866
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.18866
Código del Proyecto:
info:eu-repo/grantAgreement/FONDECYT//1200091/Unravelling the dynamics and impacts of sediment-laden flows in urban areas in Southern Chile as a basis for innovative adaptation (SEDIMPACT)
Agradecimientos:
Esta investigación fue financiada por ANID/CONICYT con el Proyecto FONDECYT REGULAR - Folio 1200091 -“Unravelling the dynamics and impacts of sediment-laden flows in urban areas in Southern Chile as a basis for innovative ...[+]
Tipo: Artículo

Localización


 

References

Basso-Báez, S., Mazzorana, B., Ulloa, H., Bahamondes, D., Ruiz-Villanueva, V., Sanhueza, D.,... Picco, L. 2020. Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 102, 102655. https://doi.org/10.1016/j.jsames.2020.102655

Benson, M.A., Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements (No. 03-A1). US Govt. Print. Off.

Bierman, P.R., Montgomery, D.R., Massey, C.A. 2013. Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts (Vol. 2013, pp. ED23E-01). [+]
Basso-Báez, S., Mazzorana, B., Ulloa, H., Bahamondes, D., Ruiz-Villanueva, V., Sanhueza, D.,... Picco, L. 2020. Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 102, 102655. https://doi.org/10.1016/j.jsames.2020.102655

Benson, M.A., Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements (No. 03-A1). US Govt. Print. Off.

Bierman, P.R., Montgomery, D.R., Massey, C.A. 2013. Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts (Vol. 2013, pp. ED23E-01).

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E.,... Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004

Bladé, E., Ruiz-Villanueva, V., Stoffel, M., Corestein, G. 2016a. Challenges of numerical modelling of flow, sediment, and wood in rivers. In Proceedings of the third International Conference of Wood in World Rivers.

Braudrick, C.A., Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7

Braudrick, C.A., Grant, G.E., Ishikawa, Y., Ikeda, H. 1997. Dynamics of wood transport in streams: a flume experiment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(7), 669-683. https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L

Chanson, H. 2004. Hydraulics of open channel flow. Elsevier.

Chow, V.T. 1959. Open-channel hydraulics. McGraw-Hill civil engineering series.

Comiti, F., Lucía, A., Rickenmann, D. 2016. Large wood recruitment and transport during large floods: a review. Geomorphology, 269, 23-39. https://doi.org/10.1016/j.geomorph.2016.06.016

Detert, M., Weitbrecht, V. 2013. User guide to gravelometric image analysis by BASEGRAIN. Advances in science and research, 1789-1795.

Dirección general de Aguas (DGA), Ministerio de Obras Públicas. 2023. Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. URL: https://snia.mop.gob.cl/BNAConsultas/reportes

Drobot, R., Draghia, A.F., Ciuiu, D., Trandafir, R. 2021. Design floods considering the epistemic uncertainty. Water, 13(11), 1601. https://doi.org/10.3390/w13111601

Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017

Gilbert, G.K., Murphy, E.C. 1914. The transportation of debris by running water (No. 86). US Government Printing Office. https://doi.org/10.3133/pp86

Gippel, C.J. 1995. Environmental hydraulics of large woody debris in streams and rivers. Journal of Environmental Engineering, 121(5), 388-395. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388)

Graham, D.J., Reid, I., Rice, S.P. 2005a. Automated sizing of coarse-grained sediments: image-processing procedures. Mathematical geology, 37(1), 1-28. https://doi.org/10.1007/s11004-005-8745-x

Graham, D.J., Rice, S.P., Reid, I. 2005b. A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003868

Gurnell, A.M., Petts, G.E., Harris, N., Ward, J.V., Tockner, K., Edwards, P.J., Kollmann, J. 2000. Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25(3), 255-275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H

Gurnell, A.M., Piégay, H., Swanson, F.J., Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology, 47(4), 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x

Hinshaw, S., Wohl, E., Davis, D. 2020. The effects of longitudinal variations in valley geometry and wood load on flood response. Earth Surface Processes and Landforms, 45(12), 2927-2939. https://doi.org/10.1002/esp.4940

Iroumé, A., Mao, L., Andreoli, A., Ulloa, H., Ardiles, M.P. 2015. Large wood mobility processes in low-order Chilean river channels. Geomorphology, 228, 681-693. https://doi.org/10.1016/j.geomorph.2014.10.025

James, Mike R., tuart Robson. 2014. “Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks.” Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609

Korup, O., Seidemann, J., Mohr, C.H. 2019. Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nature Geoscience, 12(4), 284-289. https://doi.org/10.1038/s41561-019-0315-9

Lancaster, S.T., Hayes, S.K., Grant, G.E. 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR001227

Li, Xiu quan, Zhu an Chen, Li ting Zhang, and Dan Jia. 2016. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. Procedia Environmental Sciences 36:184-190. https://doi.org/10.1016/j.proenv.2016.09.031

Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., Yao, J. 2019. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Science of the Total Environment, 660, 245-259. https://doi.org/10.1016/j.scitotenv.2019.01.015

Lisle, T.E. 1995. Particle size variations between bed load and bed material in natural gravel bed channels. Water Resources Research, 31(4), 1107-1118. https://doi.org/10.1029/94WR02526

Major, J.J., Lara, L.E. 2013. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geology, 40(2), 196-215. https://doi.org/10.5027/andgeoV40n2-a01

Major, J.J., Bertin, D., Pierson, T.C., Amigo, Á., Iroumé, A., Ulloa, H., Castro, J. 2016. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water Resources Research, 52(7), 5075-5094. https://doi.org/10.1002/2015WR018250

Major, J.J., Pierson, T.C., Hoblitt, R.P., Moreno, H. 2013. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): Forest disturbances, deposits, and dynamics. Andean Geology, 40(2), 324-358. https://doi.org/10.5027/andgeoV40n2-a09

Marcus, W.A., Marston, R.A., Colvard Jr, C.R., Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology, 44(3-4), 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7

Martini, L., Picco, L., Iroumé, A., Cavalli, M. 2019. Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Science of the Total Environment, 692, 1209-1222. https://doi.org/10.1016/j.scitotenv.2019.07.303

Mazzorana, B., Hübl, J., Zischg, A., Largiader, A. 2011. Modelling woody material transport and deposition in alpine rivers. Natural Hazards, 56(2), 425-449. https://doi.org/10.1007/s11069-009-9492-y

Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T.,... Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316

Mazzorana, B., Picco, L., Rainato, R., Iroumé, A., Ruiz-Villanueva, V., Rojas, C.,... Melnick, D. 2019. Cascading processes in a changing environment: disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 655, 1089-1103. https://doi.org/10.1016/j.scitotenv.2018.11.217

McMillan, H.K., Westerberg, I.K., Krueger, T. 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), e1319. https://doi.org/10.1002/wat2.1319

Meyer-Peter E, Muller R 1948. Formulas for Bed-Load Transport. IAHSR, Stockholm, pp 39–64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7

Moss, M.E. 1979. Some basic considerations in the design of hydrologic data networks. Water Resources Research, 15(6), 1673-1676. https://doi.org/10.1029/WR015i006p01673

Phillips, J.D. 2009. Landscape evolution space and the relative importance of geomorphic processes and controls. Geomorphology, 109(3-4), 79-85. https://doi.org/10.1016/j.geomorph.2009.01.007

Phillips, J.D. 2014. State transitions in geomorphic responses to environmental change. Geomorphology, 204, 208-216. https://doi.org/10.1016/j.geomorph.2013.08.005

Pierson, T.C., Major, J.J. 2014. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42, 469-507. https://doi.org/10.1146/annurev-earth-060313-054913

Pierson, T.C., Major, J.J., Amigo, A., Moreno, H. 2013. Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bulletin of Volcanology, 75(5), 1-17. https://doi.org/10.1007/s00445-013-0723-4

Ravazzolo, D., Mao, L., Mazzorana, B., Ruiz-Villanueva, V. 2017. Brief communication: The curious case of the large woodladen flow event in the Pocuro stream (Chile). Natural Hazards and Earth System Sciences, 17(11), 2053-2058. https://doi.org/10.5194/nhess-17-2053-2017

Rijn, L.C.V. 1984. Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)

Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Eguibar, M.A., Pardo-Igúzquiza, E. 2013. Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 27(24), 3424-3437. https://doi.org/10.1002/hyp.9433

Ruiz Villanueva, V., Bladé Castellet, E., Díez-Herrero, A., Bodoque, J.M., Sánchez-Juny, M. 2014a. Two-dimensional modelling of large wood transport during flash floods. Earth surface processes and landforms, 39(4), 438-449. https://doi.org/10.1002/esp.3456

Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., Bodoque, J.M. 2014b. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077–1096. https://doi.org/10.2166/hydro.2014.026

Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Bladé, E. 2014c. Large wood transport as significant influence on flood risk in a mountain village. Natural hazards, 74(2), 967-987. DOI 10.1007/s11069-014-1222-4

Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N.K., Stoffel, M. 2017. Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3-28. https://doi.org/10.1177/0309133316658614

Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L.,... Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603

Ruiz-Villanueva, V., Gamberini, C., Bladé, E., Stoffel, M., Bertoldi, W. 2020. Numerical modeling of instream wood transport, deposition, and accumulation in braided morphologies under unsteady conditions: Sensitivity and high-resolution quantitative model validation. Water Resources Research, 56(7), e2019WR026221. https://doi.org/10.1029/2019WR026221

Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., Stoffel, M. 2016a. Factors controlling large-wood transport in a mountain river. Geomorphology, 272, 21-31. https://doi.org/10.1016/j.geomorph.2015.04.004

Ruiz-Villanueva, V., Piégay, H., Gurnell, A.M., Marston, R.A., Stoffel, M. 2016b. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics, 54(3), 611-652. https://doi.org/10.1002/2015RG000514

Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., Stoffel, M. 2016c. Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena, 140, 182-194. https://doi.org/10.1016/j.catena.2016.02.001

Rute, C. 2014. Diseño y estudio de defensas fluviales en la ribera sur del río Blanco en Chaitén. Universidad Austral de Chile, Valdivia, Chile.

Smith, D., Fischbacher, M. 2009. The changing nature of risk and risk management: The challenge of borders, uncertainty and resilience. Risk management, 11(1), 1-12. https://doi.org/10.1057/rm.2009.1

St, L., Wold, S. 1989. Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272. https://doi.org/10.1016/0169-7439(89)80095-4

Starr, W. 2019. “Counterfactuals”, The Stanford Encyclopedia of Philosophy 2021, Edward N. Zalta (ed.), https://plato.stanford.edu/archives/sum2021/entries/counterfactuals

Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P. 2017. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112-127. https://doi.org/10.1016/j.geomorph.2016.10.011

Swanson, F.J., Jones, J.A., Crisafulli, C.M., Lara, A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geology, 40(2), 359-391. https://doi.org/10.5027/andgeoV40n2-a10

Taleb, N.N. 2007. Black swans and the domains of statistics. The american statistician, 61(3), 198-200. https://doi.org/10.1198/000313007X219996

Thoms, M.C., Piégay, H., Parsons, M. 2018. What do you mean,‘resilient geomorphic systems’?. Geomorphology, 305, 8-19. https://doi.org/10.1016/j.geomorph.2017.09.003

Tonon, A., Iroumé, A., Picco, L., Oss-Cazzador, D., Lenzi, M.A. 2017. Temporal variations of large wood abundance and mobility in the Blanco River affected by the Chaitén volcanic eruption, southern Chile. Catena, 156, 149-160. https://doi.org/10.1016/j.catena.2017.03.025

Tonon, A., Picco, L., Rainato, R. 2018. Test of methodology for developing a large wood budget: A 1-year example from a regulated gravel bed river following ordinary floods. Catena, 165, 115-124. https://doi.org/10.1016/j.catena.2018.01.035

Umazano, A.M., Melchor, R.N., Bedatou, E., Bellosi, E.S., Krause, J.M. 2014. Fluvial response to sudden input of pyroclastic sediments during the 2008–2009 eruption of the Chaitén Volcano (Chile): The role of logjams. Journal of South American Earth Sciences, 54, 140-157. https://doi.org/10.1016/j.jsames.2014.04.007

Viero, D.P., Peruzzo, P., Carniello, L., Defina, A. 2014. Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resources Research, 50(7), 5941-5957. https://doi.org/10.1002/2013WR014293

Wohl, E., Polvi, L.E., Cadol, D. 2011. Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, South Carolina, USA. Geomorphology, 126(1-2), 108-120. https://doi.org/10.1016/j.geomorph.2010.10.035

Wohl, E., Scott, D.N., Lininger, K.B. 2018. Spatial distribution of channel and floodplain large wood in forested river corridors of the Northern Rockies. Water Resources Research, 54(10), 7879-7892. https://doi.org/10.1029/2018WR022750

Wyżga, B., Zawiejska, J., Mikuś, P., Kaczka, R.J. 2015. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology, 228, 275-285. https://doi.org/10.1016/j.geomorph.2014.09.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem