Mostrar el registro sencillo del ítem
dc.contributor.author | Mazzorana, Bruno | es_ES |
dc.contributor.author | Bahamondes Rosas, Diego | es_ES |
dc.contributor.author | Montecinos, Liz | es_ES |
dc.contributor.author | Ruiz-Villanueva, Virginia | es_ES |
dc.contributor.author | Rojas, Iván | es_ES |
dc.coverage.spatial | east=-72.7095437; north=-42.918234; name=Chaitén, Chaiten, Chaitén, Los Lagos, Xile | es_ES |
dc.date.accessioned | 2023-05-08T06:42:55Z | |
dc.date.available | 2023-05-08T06:42:55Z | |
dc.date.issued | 2023-04-28 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/193174 | |
dc.description.abstract | [EN] This work explored the hydrodynamic response of the Blanco River to three-phase flows (water, sediment, and wood), in a context of volcanic disturbance. The scarce hydrological information makes the use of traditional methods difficult, so an alternative methodological approach was defined to determine the flood hazard through numerical modelling (Iber) and scenario design. The results showed that the discharge required to flood the town varied between 850 and 950 m3/s for single-phase flows (water only), while for three-phase flows the discharge was much lower (between 700 and 800 m3/s). In addition, significant differences in flooded areas were observed between scenarios with different roughness and proportion of sediment and wood in the flow. The results show the great complexity and sensitivity of the Rio Blanco River system. | es_ES |
dc.description.abstract | [ES] En este trabajo se exploró la respuesta hidrodinámica del Río Blanco ante flujos trifásicos (agua, sedimento y madera), en un contexto de perturbación volcánica. La escasa información hidrológica dificulta el uso de métodos tradicionales, por lo que se definió una alternativa metodológica para determinar la peligrosidad de inundaciones a través de modelos numéricos (Iber) y el diseño de escenarios. Los resultados mostraron que el caudal necesario para el desborde del río varía entre 850 y 950 m3/s para flujos monofásicos (solo agua), mientras que para los flujos trifásicos el caudal fue mucho menor (entre 700 y 800 m3/s). Además, se observaron diferencias significativas en el área inundada entre los escenarios con distintas rugosidades y proporción de sedimento y madera en el flujo. Los resultados evidencian la gran complejidad y sensibilidad del sistema fluvial del Río Blanco. | es_ES |
dc.description.sponsorship | Esta investigación fue financiada por ANID/CONICYT con el Proyecto FONDECYT REGULAR - Folio 1200091 -“Unravelling the dynamics and impacts of sediment-laden flows in urban areas in Southern Chile as a basis for innovative adaptation (SEDIMPACT)” del Investigador Responsable Bruno Mazzorana. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Chaitén | es_ES |
dc.subject | Hazardouness | es_ES |
dc.subject | Thriphasic flows | es_ES |
dc.subject | Iber | es_ES |
dc.subject | Hydrodynamic sensitivity | es_ES |
dc.subject | Peligrosidad | es_ES |
dc.subject | Flujos trifásicos | es_ES |
dc.subject | Sensibilidad hidrodinámica | es_ES |
dc.title | Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile) | es_ES |
dc.title.alternative | Exploring the hydrodynamic response of a highly perturbed river due to volcanic eruptions: the Blanco River, Chaitén (Chile) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.18866 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1200091/Unravelling the dynamics and impacts of sediment-laden flows in urban areas in Southern Chile as a basis for innovative adaptation (SEDIMPACT) | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mazzorana, B.; Bahamondes Rosas, D.; Montecinos, L.; Ruiz-Villanueva, V.; Rojas, I. (2023). Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile). Ingeniería del Agua. 27(2):73-92. https://doi.org/10.4995/ia.2023.18866 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.18866 | es_ES |
dc.description.upvformatpinicio | 73 | es_ES |
dc.description.upvformatpfin | 92 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\18866 | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | Basso-Báez, S., Mazzorana, B., Ulloa, H., Bahamondes, D., Ruiz-Villanueva, V., Sanhueza, D.,... Picco, L. 2020. Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 102, 102655. https://doi.org/10.1016/j.jsames.2020.102655 | es_ES |
dc.description.references | Benson, M.A., Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements (No. 03-A1). US Govt. Print. Off. | es_ES |
dc.description.references | Bierman, P.R., Montgomery, D.R., Massey, C.A. 2013. Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts (Vol. 2013, pp. ED23E-01). | es_ES |
dc.description.references | Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E.,... Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004 | es_ES |
dc.description.references | Bladé, E., Ruiz-Villanueva, V., Stoffel, M., Corestein, G. 2016a. Challenges of numerical modelling of flow, sediment, and wood in rivers. In Proceedings of the third International Conference of Wood in World Rivers. | es_ES |
dc.description.references | Braudrick, C.A., Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7 | es_ES |
dc.description.references | Braudrick, C.A., Grant, G.E., Ishikawa, Y., Ikeda, H. 1997. Dynamics of wood transport in streams: a flume experiment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(7), 669-683. https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L | es_ES |
dc.description.references | Chanson, H. 2004. Hydraulics of open channel flow. Elsevier. | es_ES |
dc.description.references | Chow, V.T. 1959. Open-channel hydraulics. McGraw-Hill civil engineering series. | es_ES |
dc.description.references | Comiti, F., Lucía, A., Rickenmann, D. 2016. Large wood recruitment and transport during large floods: a review. Geomorphology, 269, 23-39. https://doi.org/10.1016/j.geomorph.2016.06.016 | es_ES |
dc.description.references | Detert, M., Weitbrecht, V. 2013. User guide to gravelometric image analysis by BASEGRAIN. Advances in science and research, 1789-1795. | es_ES |
dc.description.references | Dirección general de Aguas (DGA), Ministerio de Obras Públicas. 2023. Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. URL: https://snia.mop.gob.cl/BNAConsultas/reportes | es_ES |
dc.description.references | Drobot, R., Draghia, A.F., Ciuiu, D., Trandafir, R. 2021. Design floods considering the epistemic uncertainty. Water, 13(11), 1601. https://doi.org/10.3390/w13111601 | es_ES |
dc.description.references | Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017 | es_ES |
dc.description.references | Gilbert, G.K., Murphy, E.C. 1914. The transportation of debris by running water (No. 86). US Government Printing Office. https://doi.org/10.3133/pp86 | es_ES |
dc.description.references | Gippel, C.J. 1995. Environmental hydraulics of large woody debris in streams and rivers. Journal of Environmental Engineering, 121(5), 388-395. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388) | es_ES |
dc.description.references | Graham, D.J., Reid, I., Rice, S.P. 2005a. Automated sizing of coarse-grained sediments: image-processing procedures. Mathematical geology, 37(1), 1-28. https://doi.org/10.1007/s11004-005-8745-x | es_ES |
dc.description.references | Graham, D.J., Rice, S.P., Reid, I. 2005b. A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003868 | es_ES |
dc.description.references | Gurnell, A.M., Petts, G.E., Harris, N., Ward, J.V., Tockner, K., Edwards, P.J., Kollmann, J. 2000. Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25(3), 255-275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H | es_ES |
dc.description.references | Gurnell, A.M., Piégay, H., Swanson, F.J., Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology, 47(4), 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x | es_ES |
dc.description.references | Hinshaw, S., Wohl, E., Davis, D. 2020. The effects of longitudinal variations in valley geometry and wood load on flood response. Earth Surface Processes and Landforms, 45(12), 2927-2939. https://doi.org/10.1002/esp.4940 | es_ES |
dc.description.references | Iroumé, A., Mao, L., Andreoli, A., Ulloa, H., Ardiles, M.P. 2015. Large wood mobility processes in low-order Chilean river channels. Geomorphology, 228, 681-693. https://doi.org/10.1016/j.geomorph.2014.10.025 | es_ES |
dc.description.references | James, Mike R., tuart Robson. 2014. “Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks.” Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609 | es_ES |
dc.description.references | Korup, O., Seidemann, J., Mohr, C.H. 2019. Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nature Geoscience, 12(4), 284-289. https://doi.org/10.1038/s41561-019-0315-9 | es_ES |
dc.description.references | Lancaster, S.T., Hayes, S.K., Grant, G.E. 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR001227 | es_ES |
dc.description.references | Li, Xiu quan, Zhu an Chen, Li ting Zhang, and Dan Jia. 2016. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. Procedia Environmental Sciences 36:184-190. https://doi.org/10.1016/j.proenv.2016.09.031 | es_ES |
dc.description.references | Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., Yao, J. 2019. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Science of the Total Environment, 660, 245-259. https://doi.org/10.1016/j.scitotenv.2019.01.015 | es_ES |
dc.description.references | Lisle, T.E. 1995. Particle size variations between bed load and bed material in natural gravel bed channels. Water Resources Research, 31(4), 1107-1118. https://doi.org/10.1029/94WR02526 | es_ES |
dc.description.references | Major, J.J., Lara, L.E. 2013. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geology, 40(2), 196-215. https://doi.org/10.5027/andgeoV40n2-a01 | es_ES |
dc.description.references | Major, J.J., Bertin, D., Pierson, T.C., Amigo, Á., Iroumé, A., Ulloa, H., Castro, J. 2016. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water Resources Research, 52(7), 5075-5094. https://doi.org/10.1002/2015WR018250 | es_ES |
dc.description.references | Major, J.J., Pierson, T.C., Hoblitt, R.P., Moreno, H. 2013. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): Forest disturbances, deposits, and dynamics. Andean Geology, 40(2), 324-358. https://doi.org/10.5027/andgeoV40n2-a09 | es_ES |
dc.description.references | Marcus, W.A., Marston, R.A., Colvard Jr, C.R., Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology, 44(3-4), 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7 | es_ES |
dc.description.references | Martini, L., Picco, L., Iroumé, A., Cavalli, M. 2019. Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Science of the Total Environment, 692, 1209-1222. https://doi.org/10.1016/j.scitotenv.2019.07.303 | es_ES |
dc.description.references | Mazzorana, B., Hübl, J., Zischg, A., Largiader, A. 2011. Modelling woody material transport and deposition in alpine rivers. Natural Hazards, 56(2), 425-449. https://doi.org/10.1007/s11069-009-9492-y | es_ES |
dc.description.references | Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T.,... Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316 | es_ES |
dc.description.references | Mazzorana, B., Picco, L., Rainato, R., Iroumé, A., Ruiz-Villanueva, V., Rojas, C.,... Melnick, D. 2019. Cascading processes in a changing environment: disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 655, 1089-1103. https://doi.org/10.1016/j.scitotenv.2018.11.217 | es_ES |
dc.description.references | McMillan, H.K., Westerberg, I.K., Krueger, T. 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), e1319. https://doi.org/10.1002/wat2.1319 | es_ES |
dc.description.references | Meyer-Peter E, Muller R 1948. Formulas for Bed-Load Transport. IAHSR, Stockholm, pp 39–64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7 | es_ES |
dc.description.references | Moss, M.E. 1979. Some basic considerations in the design of hydrologic data networks. Water Resources Research, 15(6), 1673-1676. https://doi.org/10.1029/WR015i006p01673 | es_ES |
dc.description.references | Phillips, J.D. 2009. Landscape evolution space and the relative importance of geomorphic processes and controls. Geomorphology, 109(3-4), 79-85. https://doi.org/10.1016/j.geomorph.2009.01.007 | es_ES |
dc.description.references | Phillips, J.D. 2014. State transitions in geomorphic responses to environmental change. Geomorphology, 204, 208-216. https://doi.org/10.1016/j.geomorph.2013.08.005 | es_ES |
dc.description.references | Pierson, T.C., Major, J.J. 2014. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42, 469-507. https://doi.org/10.1146/annurev-earth-060313-054913 | es_ES |
dc.description.references | Pierson, T.C., Major, J.J., Amigo, A., Moreno, H. 2013. Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bulletin of Volcanology, 75(5), 1-17. https://doi.org/10.1007/s00445-013-0723-4 | es_ES |
dc.description.references | Ravazzolo, D., Mao, L., Mazzorana, B., Ruiz-Villanueva, V. 2017. Brief communication: The curious case of the large woodladen flow event in the Pocuro stream (Chile). Natural Hazards and Earth System Sciences, 17(11), 2053-2058. https://doi.org/10.5194/nhess-17-2053-2017 | es_ES |
dc.description.references | Rijn, L.C.V. 1984. Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613) | es_ES |
dc.description.references | Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Eguibar, M.A., Pardo-Igúzquiza, E. 2013. Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 27(24), 3424-3437. https://doi.org/10.1002/hyp.9433 | es_ES |
dc.description.references | Ruiz Villanueva, V., Bladé Castellet, E., Díez-Herrero, A., Bodoque, J.M., Sánchez-Juny, M. 2014a. Two-dimensional modelling of large wood transport during flash floods. Earth surface processes and landforms, 39(4), 438-449. https://doi.org/10.1002/esp.3456 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., Bodoque, J.M. 2014b. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077–1096. https://doi.org/10.2166/hydro.2014.026 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Bladé, E. 2014c. Large wood transport as significant influence on flood risk in a mountain village. Natural hazards, 74(2), 967-987. DOI 10.1007/s11069-014-1222-4 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N.K., Stoffel, M. 2017. Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3-28. https://doi.org/10.1177/0309133316658614 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L.,... Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Gamberini, C., Bladé, E., Stoffel, M., Bertoldi, W. 2020. Numerical modeling of instream wood transport, deposition, and accumulation in braided morphologies under unsteady conditions: Sensitivity and high-resolution quantitative model validation. Water Resources Research, 56(7), e2019WR026221. https://doi.org/10.1029/2019WR026221 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., Stoffel, M. 2016a. Factors controlling large-wood transport in a mountain river. Geomorphology, 272, 21-31. https://doi.org/10.1016/j.geomorph.2015.04.004 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Piégay, H., Gurnell, A.M., Marston, R.A., Stoffel, M. 2016b. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics, 54(3), 611-652. https://doi.org/10.1002/2015RG000514 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., Stoffel, M. 2016c. Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena, 140, 182-194. https://doi.org/10.1016/j.catena.2016.02.001 | es_ES |
dc.description.references | Rute, C. 2014. Diseño y estudio de defensas fluviales en la ribera sur del río Blanco en Chaitén. Universidad Austral de Chile, Valdivia, Chile. | es_ES |
dc.description.references | Smith, D., Fischbacher, M. 2009. The changing nature of risk and risk management: The challenge of borders, uncertainty and resilience. Risk management, 11(1), 1-12. https://doi.org/10.1057/rm.2009.1 | es_ES |
dc.description.references | St, L., Wold, S. 1989. Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272. https://doi.org/10.1016/0169-7439(89)80095-4 | es_ES |
dc.description.references | Starr, W. 2019. “Counterfactuals”, The Stanford Encyclopedia of Philosophy 2021, Edward N. Zalta (ed.), https://plato.stanford.edu/archives/sum2021/entries/counterfactuals | es_ES |
dc.description.references | Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P. 2017. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112-127. https://doi.org/10.1016/j.geomorph.2016.10.011 | es_ES |
dc.description.references | Swanson, F.J., Jones, J.A., Crisafulli, C.M., Lara, A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geology, 40(2), 359-391. https://doi.org/10.5027/andgeoV40n2-a10 | es_ES |
dc.description.references | Taleb, N.N. 2007. Black swans and the domains of statistics. The american statistician, 61(3), 198-200. https://doi.org/10.1198/000313007X219996 | es_ES |
dc.description.references | Thoms, M.C., Piégay, H., Parsons, M. 2018. What do you mean,‘resilient geomorphic systems’?. Geomorphology, 305, 8-19. https://doi.org/10.1016/j.geomorph.2017.09.003 | es_ES |
dc.description.references | Tonon, A., Iroumé, A., Picco, L., Oss-Cazzador, D., Lenzi, M.A. 2017. Temporal variations of large wood abundance and mobility in the Blanco River affected by the Chaitén volcanic eruption, southern Chile. Catena, 156, 149-160. https://doi.org/10.1016/j.catena.2017.03.025 | es_ES |
dc.description.references | Tonon, A., Picco, L., Rainato, R. 2018. Test of methodology for developing a large wood budget: A 1-year example from a regulated gravel bed river following ordinary floods. Catena, 165, 115-124. https://doi.org/10.1016/j.catena.2018.01.035 | es_ES |
dc.description.references | Umazano, A.M., Melchor, R.N., Bedatou, E., Bellosi, E.S., Krause, J.M. 2014. Fluvial response to sudden input of pyroclastic sediments during the 2008–2009 eruption of the Chaitén Volcano (Chile): The role of logjams. Journal of South American Earth Sciences, 54, 140-157. https://doi.org/10.1016/j.jsames.2014.04.007 | es_ES |
dc.description.references | Viero, D.P., Peruzzo, P., Carniello, L., Defina, A. 2014. Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resources Research, 50(7), 5941-5957. https://doi.org/10.1002/2013WR014293 | es_ES |
dc.description.references | Wohl, E., Polvi, L.E., Cadol, D. 2011. Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, South Carolina, USA. Geomorphology, 126(1-2), 108-120. https://doi.org/10.1016/j.geomorph.2010.10.035 | es_ES |
dc.description.references | Wohl, E., Scott, D.N., Lininger, K.B. 2018. Spatial distribution of channel and floodplain large wood in forested river corridors of the Northern Rockies. Water Resources Research, 54(10), 7879-7892. https://doi.org/10.1029/2018WR022750 | es_ES |
dc.description.references | Wyżga, B., Zawiejska, J., Mikuś, P., Kaczka, R.J. 2015. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology, 228, 275-285. https://doi.org/10.1016/j.geomorph.2014.09.014 | es_ES |