- -

Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mazzorana, Bruno es_ES
dc.contributor.author Bahamondes Rosas, Diego es_ES
dc.contributor.author Montecinos, Liz es_ES
dc.contributor.author Ruiz-Villanueva, Virginia es_ES
dc.contributor.author Rojas, Iván es_ES
dc.coverage.spatial east=-72.7095437; north=-42.918234; name=Chaitén, Chaiten, Chaitén, Los Lagos, Xile es_ES
dc.date.accessioned 2023-05-08T06:42:55Z
dc.date.available 2023-05-08T06:42:55Z
dc.date.issued 2023-04-28
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/193174
dc.description.abstract [EN] This work explored the hydrodynamic response of the Blanco River to three-phase flows (water, sediment, and wood), in a context of volcanic disturbance. The scarce hydrological information makes the use of traditional methods difficult, so an alternative methodological approach was defined to determine the flood hazard through numerical modelling (Iber) and scenario design. The results showed that the discharge required to flood the town varied between 850 and 950 m3/s for single-phase flows (water only), while for three-phase flows the discharge was much lower (between 700 and 800 m3/s). In addition, significant differences in flooded areas were observed between scenarios with different roughness and proportion of sediment and wood in the flow. The results show the great complexity and sensitivity of the Rio Blanco River system. es_ES
dc.description.abstract [ES] En este trabajo se exploró la respuesta hidrodinámica del Río Blanco ante flujos trifásicos (agua, sedimento y madera), en un contexto de perturbación volcánica. La escasa información hidrológica dificulta el uso de métodos tradicionales, por lo que se definió una alternativa metodológica para determinar la peligrosidad de inundaciones a través de modelos numéricos (Iber) y el diseño de escenarios. Los resultados mostraron que el caudal necesario para el desborde del río varía entre 850 y 950 m3/s para flujos monofásicos (solo agua), mientras que para los flujos trifásicos el caudal fue mucho menor (entre 700 y 800 m3/s). Además, se observaron diferencias significativas en el área inundada entre los escenarios con distintas rugosidades y proporción de sedimento y madera en el flujo. Los resultados evidencian la gran complejidad y sensibilidad del sistema fluvial del Río Blanco. es_ES
dc.description.sponsorship Esta investigación fue financiada por ANID/CONICYT con el Proyecto FONDECYT REGULAR - Folio 1200091 -“Unravelling the dynamics and impacts of sediment-laden flows in urban areas in Southern Chile as a basis for innovative adaptation (SEDIMPACT)” del Investigador Responsable Bruno Mazzorana. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del Agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Chaitén es_ES
dc.subject Hazardouness es_ES
dc.subject Thriphasic flows es_ES
dc.subject Iber es_ES
dc.subject Hydrodynamic sensitivity es_ES
dc.subject Peligrosidad es_ES
dc.subject Flujos trifásicos es_ES
dc.subject Sensibilidad hidrodinámica es_ES
dc.title Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile) es_ES
dc.title.alternative Exploring the hydrodynamic response of a highly perturbed river due to volcanic eruptions: the Blanco River, Chaitén (Chile) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2023.18866
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1200091/Unravelling the dynamics and impacts of sediment-laden flows in urban areas in Southern Chile as a basis for innovative adaptation (SEDIMPACT) es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mazzorana, B.; Bahamondes Rosas, D.; Montecinos, L.; Ruiz-Villanueva, V.; Rojas, I. (2023). Explorando la respuesta hidrodinámica de un río altamente perturbado por erupciones volcánicas: el Río Blanco, Chaitén (Chile). Ingeniería del Agua. 27(2):73-92. https://doi.org/10.4995/ia.2023.18866 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2023.18866 es_ES
dc.description.upvformatpinicio 73 es_ES
dc.description.upvformatpfin 92 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\18866 es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Basso-Báez, S., Mazzorana, B., Ulloa, H., Bahamondes, D., Ruiz-Villanueva, V., Sanhueza, D.,... Picco, L. 2020. Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 102, 102655. https://doi.org/10.1016/j.jsames.2020.102655 es_ES
dc.description.references Benson, M.A., Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements (No. 03-A1). US Govt. Print. Off. es_ES
dc.description.references Bierman, P.R., Montgomery, D.R., Massey, C.A. 2013. Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts (Vol. 2013, pp. ED23E-01). es_ES
dc.description.references Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E.,... Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004 es_ES
dc.description.references Bladé, E., Ruiz-Villanueva, V., Stoffel, M., Corestein, G. 2016a. Challenges of numerical modelling of flow, sediment, and wood in rivers. In Proceedings of the third International Conference of Wood in World Rivers. es_ES
dc.description.references Braudrick, C.A., Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7 es_ES
dc.description.references Braudrick, C.A., Grant, G.E., Ishikawa, Y., Ikeda, H. 1997. Dynamics of wood transport in streams: a flume experiment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(7), 669-683. https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L es_ES
dc.description.references Chanson, H. 2004. Hydraulics of open channel flow. Elsevier. es_ES
dc.description.references Chow, V.T. 1959. Open-channel hydraulics. McGraw-Hill civil engineering series. es_ES
dc.description.references Comiti, F., Lucía, A., Rickenmann, D. 2016. Large wood recruitment and transport during large floods: a review. Geomorphology, 269, 23-39. https://doi.org/10.1016/j.geomorph.2016.06.016 es_ES
dc.description.references Detert, M., Weitbrecht, V. 2013. User guide to gravelometric image analysis by BASEGRAIN. Advances in science and research, 1789-1795. es_ES
dc.description.references Dirección general de Aguas (DGA), Ministerio de Obras Públicas. 2023. Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. URL: https://snia.mop.gob.cl/BNAConsultas/reportes es_ES
dc.description.references Drobot, R., Draghia, A.F., Ciuiu, D., Trandafir, R. 2021. Design floods considering the epistemic uncertainty. Water, 13(11), 1601. https://doi.org/10.3390/w13111601 es_ES
dc.description.references Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., Thaler, T. 2017. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 21(6), 3183-3198. https://doi.org/10.5194/hess-21-3183-2017 es_ES
dc.description.references Gilbert, G.K., Murphy, E.C. 1914. The transportation of debris by running water (No. 86). US Government Printing Office. https://doi.org/10.3133/pp86 es_ES
dc.description.references Gippel, C.J. 1995. Environmental hydraulics of large woody debris in streams and rivers. Journal of Environmental Engineering, 121(5), 388-395. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:5(388) es_ES
dc.description.references Graham, D.J., Reid, I., Rice, S.P. 2005a. Automated sizing of coarse-grained sediments: image-processing procedures. Mathematical geology, 37(1), 1-28. https://doi.org/10.1007/s11004-005-8745-x es_ES
dc.description.references Graham, D.J., Rice, S.P., Reid, I. 2005b. A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003868 es_ES
dc.description.references Gurnell, A.M., Petts, G.E., Harris, N., Ward, J.V., Tockner, K., Edwards, P.J., Kollmann, J. 2000. Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25(3), 255-275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H es_ES
dc.description.references Gurnell, A.M., Piégay, H., Swanson, F.J., Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology, 47(4), 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x es_ES
dc.description.references Hinshaw, S., Wohl, E., Davis, D. 2020. The effects of longitudinal variations in valley geometry and wood load on flood response. Earth Surface Processes and Landforms, 45(12), 2927-2939. https://doi.org/10.1002/esp.4940 es_ES
dc.description.references Iroumé, A., Mao, L., Andreoli, A., Ulloa, H., Ardiles, M.P. 2015. Large wood mobility processes in low-order Chilean river channels. Geomorphology, 228, 681-693. https://doi.org/10.1016/j.geomorph.2014.10.025 es_ES
dc.description.references James, Mike R., tuart Robson. 2014. “Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks.” Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609 es_ES
dc.description.references Korup, O., Seidemann, J., Mohr, C.H. 2019. Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nature Geoscience, 12(4), 284-289. https://doi.org/10.1038/s41561-019-0315-9 es_ES
dc.description.references Lancaster, S.T., Hayes, S.K., Grant, G.E. 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR001227 es_ES
dc.description.references Li, Xiu quan, Zhu an Chen, Li ting Zhang, and Dan Jia. 2016. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. Procedia Environmental Sciences 36:184-190. https://doi.org/10.1016/j.proenv.2016.09.031 es_ES
dc.description.references Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., Yao, J. 2019. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Science of the Total Environment, 660, 245-259. https://doi.org/10.1016/j.scitotenv.2019.01.015 es_ES
dc.description.references Lisle, T.E. 1995. Particle size variations between bed load and bed material in natural gravel bed channels. Water Resources Research, 31(4), 1107-1118. https://doi.org/10.1029/94WR02526 es_ES
dc.description.references Major, J.J., Lara, L.E. 2013. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geology, 40(2), 196-215. https://doi.org/10.5027/andgeoV40n2-a01 es_ES
dc.description.references Major, J.J., Bertin, D., Pierson, T.C., Amigo, Á., Iroumé, A., Ulloa, H., Castro, J. 2016. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water Resources Research, 52(7), 5075-5094. https://doi.org/10.1002/2015WR018250 es_ES
dc.description.references Major, J.J., Pierson, T.C., Hoblitt, R.P., Moreno, H. 2013. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): Forest disturbances, deposits, and dynamics. Andean Geology, 40(2), 324-358. https://doi.org/10.5027/andgeoV40n2-a09 es_ES
dc.description.references Marcus, W.A., Marston, R.A., Colvard Jr, C.R., Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology, 44(3-4), 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7 es_ES
dc.description.references Martini, L., Picco, L., Iroumé, A., Cavalli, M. 2019. Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Science of the Total Environment, 692, 1209-1222. https://doi.org/10.1016/j.scitotenv.2019.07.303 es_ES
dc.description.references Mazzorana, B., Hübl, J., Zischg, A., Largiader, A. 2011. Modelling woody material transport and deposition in alpine rivers. Natural Hazards, 56(2), 425-449. https://doi.org/10.1007/s11069-009-9492-y es_ES
dc.description.references Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T.,... Valdebenito, G. 2018. Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207-222. https://doi.org/10.1111/jfr3.12316 es_ES
dc.description.references Mazzorana, B., Picco, L., Rainato, R., Iroumé, A., Ruiz-Villanueva, V., Rojas, C.,... Melnick, D. 2019. Cascading processes in a changing environment: disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 655, 1089-1103. https://doi.org/10.1016/j.scitotenv.2018.11.217 es_ES
dc.description.references McMillan, H.K., Westerberg, I.K., Krueger, T. 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), e1319. https://doi.org/10.1002/wat2.1319 es_ES
dc.description.references Meyer-Peter E, Muller R 1948. Formulas for Bed-Load Transport. IAHSR, Stockholm, pp 39–64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7 es_ES
dc.description.references Moss, M.E. 1979. Some basic considerations in the design of hydrologic data networks. Water Resources Research, 15(6), 1673-1676. https://doi.org/10.1029/WR015i006p01673 es_ES
dc.description.references Phillips, J.D. 2009. Landscape evolution space and the relative importance of geomorphic processes and controls. Geomorphology, 109(3-4), 79-85. https://doi.org/10.1016/j.geomorph.2009.01.007 es_ES
dc.description.references Phillips, J.D. 2014. State transitions in geomorphic responses to environmental change. Geomorphology, 204, 208-216. https://doi.org/10.1016/j.geomorph.2013.08.005 es_ES
dc.description.references Pierson, T.C., Major, J.J. 2014. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42, 469-507. https://doi.org/10.1146/annurev-earth-060313-054913 es_ES
dc.description.references Pierson, T.C., Major, J.J., Amigo, A., Moreno, H. 2013. Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bulletin of Volcanology, 75(5), 1-17. https://doi.org/10.1007/s00445-013-0723-4 es_ES
dc.description.references Ravazzolo, D., Mao, L., Mazzorana, B., Ruiz-Villanueva, V. 2017. Brief communication: The curious case of the large woodladen flow event in the Pocuro stream (Chile). Natural Hazards and Earth System Sciences, 17(11), 2053-2058. https://doi.org/10.5194/nhess-17-2053-2017 es_ES
dc.description.references Rijn, L.C.V. 1984. Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613) es_ES
dc.description.references Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Eguibar, M.A., Pardo-Igúzquiza, E. 2013. Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 27(24), 3424-3437. https://doi.org/10.1002/hyp.9433 es_ES
dc.description.references Ruiz Villanueva, V., Bladé Castellet, E., Díez-Herrero, A., Bodoque, J.M., Sánchez-Juny, M. 2014a. Two-dimensional modelling of large wood transport during flash floods. Earth surface processes and landforms, 39(4), 438-449. https://doi.org/10.1002/esp.3456 es_ES
dc.description.references Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., Bodoque, J.M. 2014b. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077–1096. https://doi.org/10.2166/hydro.2014.026 es_ES
dc.description.references Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A., Bladé, E. 2014c. Large wood transport as significant influence on flood risk in a mountain village. Natural hazards, 74(2), 967-987. DOI 10.1007/s11069-014-1222-4 es_ES
dc.description.references Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N.K., Stoffel, M. 2017. Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3-28. https://doi.org/10.1177/0309133316658614 es_ES
dc.description.references Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L.,... Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694-1709. https://doi.org/10.1002/esp.4603 es_ES
dc.description.references Ruiz-Villanueva, V., Gamberini, C., Bladé, E., Stoffel, M., Bertoldi, W. 2020. Numerical modeling of instream wood transport, deposition, and accumulation in braided morphologies under unsteady conditions: Sensitivity and high-resolution quantitative model validation. Water Resources Research, 56(7), e2019WR026221. https://doi.org/10.1029/2019WR026221 es_ES
dc.description.references Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., Stoffel, M. 2016a. Factors controlling large-wood transport in a mountain river. Geomorphology, 272, 21-31. https://doi.org/10.1016/j.geomorph.2015.04.004 es_ES
dc.description.references Ruiz-Villanueva, V., Piégay, H., Gurnell, A.M., Marston, R.A., Stoffel, M. 2016b. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics, 54(3), 611-652. https://doi.org/10.1002/2015RG000514 es_ES
dc.description.references Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., Stoffel, M. 2016c. Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena, 140, 182-194. https://doi.org/10.1016/j.catena.2016.02.001 es_ES
dc.description.references Rute, C. 2014. Diseño y estudio de defensas fluviales en la ribera sur del río Blanco en Chaitén. Universidad Austral de Chile, Valdivia, Chile. es_ES
dc.description.references Smith, D., Fischbacher, M. 2009. The changing nature of risk and risk management: The challenge of borders, uncertainty and resilience. Risk management, 11(1), 1-12. https://doi.org/10.1057/rm.2009.1 es_ES
dc.description.references St, L., Wold, S. 1989. Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272. https://doi.org/10.1016/0169-7439(89)80095-4 es_ES
dc.description.references Starr, W. 2019. “Counterfactuals”, The Stanford Encyclopedia of Philosophy 2021, Edward N. Zalta (ed.), https://plato.stanford.edu/archives/sum2021/entries/counterfactuals es_ES
dc.description.references Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P. 2017. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112-127. https://doi.org/10.1016/j.geomorph.2016.10.011 es_ES
dc.description.references Swanson, F.J., Jones, J.A., Crisafulli, C.M., Lara, A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geology, 40(2), 359-391. https://doi.org/10.5027/andgeoV40n2-a10 es_ES
dc.description.references Taleb, N.N. 2007. Black swans and the domains of statistics. The american statistician, 61(3), 198-200. https://doi.org/10.1198/000313007X219996 es_ES
dc.description.references Thoms, M.C., Piégay, H., Parsons, M. 2018. What do you mean,‘resilient geomorphic systems’?. Geomorphology, 305, 8-19. https://doi.org/10.1016/j.geomorph.2017.09.003 es_ES
dc.description.references Tonon, A., Iroumé, A., Picco, L., Oss-Cazzador, D., Lenzi, M.A. 2017. Temporal variations of large wood abundance and mobility in the Blanco River affected by the Chaitén volcanic eruption, southern Chile. Catena, 156, 149-160. https://doi.org/10.1016/j.catena.2017.03.025 es_ES
dc.description.references Tonon, A., Picco, L., Rainato, R. 2018. Test of methodology for developing a large wood budget: A 1-year example from a regulated gravel bed river following ordinary floods. Catena, 165, 115-124. https://doi.org/10.1016/j.catena.2018.01.035 es_ES
dc.description.references Umazano, A.M., Melchor, R.N., Bedatou, E., Bellosi, E.S., Krause, J.M. 2014. Fluvial response to sudden input of pyroclastic sediments during the 2008–2009 eruption of the Chaitén Volcano (Chile): The role of logjams. Journal of South American Earth Sciences, 54, 140-157. https://doi.org/10.1016/j.jsames.2014.04.007 es_ES
dc.description.references Viero, D.P., Peruzzo, P., Carniello, L., Defina, A. 2014. Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments. Water Resources Research, 50(7), 5941-5957. https://doi.org/10.1002/2013WR014293 es_ES
dc.description.references Wohl, E., Polvi, L.E., Cadol, D. 2011. Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, South Carolina, USA. Geomorphology, 126(1-2), 108-120. https://doi.org/10.1016/j.geomorph.2010.10.035 es_ES
dc.description.references Wohl, E., Scott, D.N., Lininger, K.B. 2018. Spatial distribution of channel and floodplain large wood in forested river corridors of the Northern Rockies. Water Resources Research, 54(10), 7879-7892. https://doi.org/10.1029/2018WR022750 es_ES
dc.description.references Wyżga, B., Zawiejska, J., Mikuś, P., Kaczka, R.J. 2015. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology, 228, 275-285. https://doi.org/10.1016/j.geomorph.2014.09.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem