Mostrar el registro sencillo del ítem
dc.contributor.author | del Vigo, Ángel | es_ES |
dc.contributor.author | Zubelzu, Sergio | es_ES |
dc.contributor.author | Juana, Luis | es_ES |
dc.date.accessioned | 2023-05-08T06:53:25Z | |
dc.date.available | 2023-05-08T06:53:25Z | |
dc.date.issued | 2023-04-28 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/193176 | |
dc.description.abstract | [EN] A numerical model able to study filtration patterns under drip irrigation conditions was presented in previous papers. The tests concluded that, the model is robust and efficient regardless of the soil characteristics. At the same time, a simplified analytical model was presented for superficial drip irrigation boundary conditions, which describes, the evolution of the bulb over the time as a function of the applied flow rate. This model is based on four soil parameters: saturated hydraulic conductivity, suction matric head at the wetting front, and the initial and saturated soil moisture contents. Simulations for soils characterized with functions type, Gardner, Clapp and Hornberger and van Genuchten-Mualem, were performed to get the maximum saturated radius on the surface at constant applied flow, for each of these three characterization schemes. Then, a set of three empirical equations has been obtained. Moreover, via the simplified analytical model, an expression in steady regime has been reached for the maximum saturated radius zone as a function of the applied flow rate and soil parameters. This paper presents the set of empirical equations obtained by simulation, and the simplified analytical model, as well as a comparison of these two models with the Wooding analytical model, which describes the same irrigation characteristics. | es_ES |
dc.description.abstract | [ES] En publicaciones previas se presentó un modelo numérico con capacidad para estudiar patrones de filtración bajo condiciones de riego por goteo. Las pruebas realizadas concluyeron que el modelo es robusto y eficiente con independencia de las características del suelo. Paralelamente, se presentó un modelo analítico simplificado para condiciones de contorno asumibles en el riego por goteo superficial, que describe la evolución del bulbo con el tiempo y en función del caudal aplicado, en base a cuatro parámetros del suelo: conductividad hidráulica en saturación, tensión en el frente, y los contenidos de humedad inicial y en saturación del suelo. A partir de simulaciones para suelos caracterizados con funciones del tipo Gardner, Clapp y Hornberger y van Genuchten-Mualem, se ha obtenido un conjunto de tres ecuaciones empíricas que describen el radio máximo de la zona saturada en superficie, a caudal aplicado constante, para cada uno de estos tres esquemas de caracterización. A través del modelo analítico simplificado se ha llegado a una expresión en régimen estacionario que relaciona el radio máximo de la zona saturada con el caudal aplicado y los parámetros del suelo. En este trabajo se presentan las ecuaciones empíricas obtenidas por simulación, y el modelo analítico simplificado, así como una comparativa de estos dos modelos con el modelo analítico de Wooding, el cual, describe las mismas características del riego. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Water flow | es_ES |
dc.subject | Simulations | es_ES |
dc.subject | Bulb size | es_ES |
dc.subject | Trickle irrigation design | es_ES |
dc.subject | Flujo de agua | es_ES |
dc.subject | Simulaciones | es_ES |
dc.subject | Tamaño del bulbo | es_ES |
dc.subject | Diseño de riegos | es_ES |
dc.title | Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico | es_ES |
dc.title.alternative | Maximum saturated radius under drip irrigation at constant applied flow rate. Analytical and empirical model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.19328 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Del Vigo, Á.; Zubelzu, S.; Juana, L. (2023). Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico. Ingeniería del Agua. 27(2):111-124. https://doi.org/10.4995/ia.2023.19328 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.19328 | es_ES |
dc.description.upvformatpinicio | 111 | es_ES |
dc.description.upvformatpfin | 124 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\19328 | es_ES |
dc.description.references | Amin, M.S.M., Ekhmaj, A.I.M. 2006. DIPAC - Drip Irrigation Water Distribution Pattern Calculator. 7th International Micro-Irrigation Congress. 10-16 Sept. Kuala Lumpur. Malaysia. | es_ES |
dc.description.references | Ben-Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x | es_ES |
dc.description.references | Bresler, E. 1978. Analysis of trickle irrigation with application to design problems. Irrigation Science, 1, 3-17. https://doi.org/10.1007/BF00269003 | es_ES |
dc.description.references | Carnahan, B. 1979. Cálculo numérico. Métodos y aplicaciones. Madrid. | es_ES |
dc.description.references | Carsel, R., Parrish, R. 1988. Developing joint probability of soil water retention characteristics. Water Resources Research, 24(5), 755-769. https://doi.org/10.1029/WR024i005p00755 | es_ES |
dc.description.references | Chu, S.T. 1994. Green-Ampt analysis of wetting patterns for surface emitters. J. Irrig. Drain E., 120(2), 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:2(414) | es_ES |
dc.description.references | Clapp, R.B., Hornberger, G.M. 1978. Empirical equations for soil hydraulic properties. Water Resources Research, 14, 601-604. https://doi.org/10.1029/WR014i004p00601 | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana, L. 2019a. Algoritmo para la resolución de la ecuación de Richards en 3-D para riego por goteo: Método, validación y resultados preliminares. XXXVII Congreso Nacional de Riegos. Don Benito. Spain. https://doi.org/10.17398/AERYD.2019.A06 | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana, L. 2019b. Study of water infiltration in soil by Richards equations in 3D: summary and methodology validation. 11th World Congress on Water Resources and Environment. Madrid. Spain. http://ewra.net/pages/EWRA2019_Proceedings.pdf | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S. y Juana, L. 2019c. Soluciones analíticas aproximadas bajo hipótesis de Green-Ampt desde fuentes semiesférica y circular en superficie. Jornadas Ingeniería del Agua (J.I.A). Toledo. Spain. https://oa.upm.es/65070/1/INVE_MEM_2019_324240.pdf | es_ES |
dc.description.references | del Vigo, Á. 2020. Simulación del flujo del agua en el suelo en riego por goteo superficial, soluciones analíticas aproximadas, caracterización del suelo y diseño de los riegos. Tesis doctoral, Universidad Politécnica de Madrid. Madrid. https://doi.org/10.20868/UPM.thesis.63840 | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana, L. 2020. Numerical routine for soil dynamics from trickle irrigation. Applied Mathematical Modeling, 83, 371-385. https://doi.org/10.1016/j.apm.2020.01.058 | es_ES |
dc.description.references | del Vigo, Á., Zubelzu, S., Juana, L. 2021. Infiltration models and soil characterization for hemispherical and disc sources based on Green-Ampt assumptions. Journal of Hydrology, 595, 1259-1266. https://doi.org/10.1016/j.jhydrol.2021.125966 | es_ES |
dc.description.references | del Vigo, Á., Colimba, J., Juana, L., Rodriguez-Sinobas, L. 2023. Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrigation Sciences, 41, 141-154. https://doi.org/10.1007/s00271-022-00806-x | es_ES |
dc.description.references | Gardner, W.R. 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228-232. https://doi.org/10.1097/00010694-195804000-00006 | es_ES |
dc.description.references | Kaul, R.K., Michael, A.M. 1982. Moisture front advance under point source of water application. J. Agric. Eng., 19(2), 1-8 | es_ES |
dc.description.references | Keyvan, M., Peters, R.T. 2011. Wetting patterns models for drip irrigation: new empirical model. Journal of Irrigation and Drainage Engineering, 137(8), 530-536. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320 | es_ES |
dc.description.references | Mualem,Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Journal, 12, 513. https://doi.org/10.1029/WR012i003p00513 | es_ES |
dc.description.references | Neuman, S.P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resources Research, 12, 564-565. https://doi.org/10.1029/WR012i003p00564 | es_ES |
dc.description.references | Pullan, A.J., Collins, I.F. 1987. Two and three-dimensional steady quasi-linear infiltration from buried and surface cavities using boundary element techniques. Water Resources Research, 23(8), 1633-1644. https://doi.org/10.1029/WR023i008p01633 | es_ES |
dc.description.references | Raats, P.A.C. 1971. Steady infiltration from point sources, cavities and basins. Soil Sci. Soc. Am. Proc., 35, 689-694. https://doi.org/10.2136/sssaj1971.03615995003500050020x | es_ES |
dc.description.references | Richards, L.A. 1931. Capillary conduction of liquids in porous medium. Journal of Applied Physics, 1, 318-333. https://doi.org/10.1063/1.1745010 | es_ES |
dc.description.references | Roth, R.L. 1974. Soil moisture distribution and wetting pattern from a point source. Proceedings of 2nd international drip irrigation congress. California. EEUU. 246-251. | es_ES |
dc.description.references | Schaap, M.G., Leij, F.J., van Genuchten, M.T. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedo-transfer functions. Journal of Hydrology, 251, 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8 | es_ES |
dc.description.references | Schwartzman, M., Zur, B. 1986. Emitter Spacing and Geometry of Wetted Soil Volume. J. Irrig. Drain. Eng., 112(3), 242-253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242) | es_ES |
dc.description.references | Šimůnek, J., van Genuchten, M., Šejna, M. 2006. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual. Version 1.0. University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic. | es_ES |
dc.description.references | Van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x | es_ES |
dc.description.references | Warrick, A.W. 1974. Time-dependent linearized infiltration: I. Point source. Soil Sci.Soc.Amer. Proc., 34, 383. https://doi.org/10.2136/sssaj1974.03615995003800030008x | es_ES |
dc.description.references | Warrick, A.W., Lomen, D.O. 1976. Time-dependent linearized infiltration: III. Strip and disc sources. Soil Sci. Soc. Amer. Proc., 40, 639-643. https://doi.org/10.2136/sssaj1976.03615995004000050014x | es_ES |
dc.description.references | Warrick, A.W. 1992. Models for disk infiltrometer. Water Resources Research, 28, 1319-1327. https://doi.org/10.1029/92WR00149 | es_ES |
dc.description.references | Weir, G.J. 1987. Steady infiltration from small shallow circular ponds. Water Resources Research, 23, 733-736. https://doi.org/10.1029/WR023i004p00733 | es_ES |
dc.description.references | Wooding, R.A. 1968. Steady infiltration from a shallow circular pond. Water Resources Research, 4, 1259-1273. https://doi.org/10.1029/WR004i006p01259 | es_ES |