- -

Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico

Mostrar el registro completo del ítem

Del Vigo, Á.; Zubelzu, S.; Juana, L. (2023). Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico. Ingeniería del Agua. 27(2):111-124. https://doi.org/10.4995/ia.2023.19328

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193176

Ficheros en el ítem

Metadatos del ítem

Título: Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico
Otro titulo: Maximum saturated radius under drip irrigation at constant applied flow rate. Analytical and empirical model
Autor: del Vigo, Ángel Zubelzu, Sergio Juana, Luis
Fecha difusión:
Resumen:
[EN] A numerical model able to study filtration patterns under drip irrigation conditions was presented in previous papers. The tests concluded that, the model is robust and efficient regardless of the soil characteristics. ...[+]


[ES] En publicaciones previas se presentó un modelo numérico con capacidad para estudiar patrones de filtración bajo condiciones de riego por goteo. Las pruebas realizadas concluyeron que el modelo es robusto y eficiente ...[+]
Palabras clave: Water flow , Simulations , Bulb size , Trickle irrigation design , Flujo de agua , Simulaciones , Tamaño del bulbo , Diseño de riegos
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.19328
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.19328
Tipo: Artículo

References

Amin, M.S.M., Ekhmaj, A.I.M. 2006. DIPAC - Drip Irrigation Water Distribution Pattern Calculator. 7th International Micro-Irrigation Congress. 10-16 Sept. Kuala Lumpur. Malaysia.

Ben-Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x

Bresler, E. 1978. Analysis of trickle irrigation with application to design problems. Irrigation Science, 1, 3-17. https://doi.org/10.1007/BF00269003 [+]
Amin, M.S.M., Ekhmaj, A.I.M. 2006. DIPAC - Drip Irrigation Water Distribution Pattern Calculator. 7th International Micro-Irrigation Congress. 10-16 Sept. Kuala Lumpur. Malaysia.

Ben-Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x

Bresler, E. 1978. Analysis of trickle irrigation with application to design problems. Irrigation Science, 1, 3-17. https://doi.org/10.1007/BF00269003

Carnahan, B. 1979. Cálculo numérico. Métodos y aplicaciones. Madrid.

Carsel, R., Parrish, R. 1988. Developing joint probability of soil water retention characteristics. Water Resources Research, 24(5), 755-769. https://doi.org/10.1029/WR024i005p00755

Chu, S.T. 1994. Green-Ampt analysis of wetting patterns for surface emitters. J. Irrig. Drain E., 120(2), 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:2(414)

Clapp, R.B., Hornberger, G.M. 1978. Empirical equations for soil hydraulic properties. Water Resources Research, 14, 601-604. https://doi.org/10.1029/WR014i004p00601

del Vigo, Á., Zubelzu, S., Juana, L. 2019a. Algoritmo para la resolución de la ecuación de Richards en 3-D para riego por goteo: Método, validación y resultados preliminares. XXXVII Congreso Nacional de Riegos. Don Benito. Spain. https://doi.org/10.17398/AERYD.2019.A06

del Vigo, Á., Zubelzu, S., Juana, L. 2019b. Study of water infiltration in soil by Richards equations in 3D: summary and methodology validation. 11th World Congress on Water Resources and Environment. Madrid. Spain. http://ewra.net/pages/EWRA2019_Proceedings.pdf

del Vigo, Á., Zubelzu, S. y Juana, L. 2019c. Soluciones analíticas aproximadas bajo hipótesis de Green-Ampt desde fuentes semiesférica y circular en superficie. Jornadas Ingeniería del Agua (J.I.A). Toledo. Spain. https://oa.upm.es/65070/1/INVE_MEM_2019_324240.pdf

del Vigo, Á. 2020. Simulación del flujo del agua en el suelo en riego por goteo superficial, soluciones analíticas aproximadas, caracterización del suelo y diseño de los riegos. Tesis doctoral, Universidad Politécnica de Madrid. Madrid. https://doi.org/10.20868/UPM.thesis.63840

del Vigo, Á., Zubelzu, S., Juana, L. 2020. Numerical routine for soil dynamics from trickle irrigation. Applied Mathematical Modeling, 83, 371-385. https://doi.org/10.1016/j.apm.2020.01.058

del Vigo, Á., Zubelzu, S., Juana, L. 2021. Infiltration models and soil characterization for hemispherical and disc sources based on Green-Ampt assumptions. Journal of Hydrology, 595, 1259-1266. https://doi.org/10.1016/j.jhydrol.2021.125966

del Vigo, Á., Colimba, J., Juana, L., Rodriguez-Sinobas, L. 2023. Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrigation Sciences, 41, 141-154. https://doi.org/10.1007/s00271-022-00806-x

Gardner, W.R. 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228-232. https://doi.org/10.1097/00010694-195804000-00006

Kaul, R.K., Michael, A.M. 1982. Moisture front advance under point source of water application. J. Agric. Eng., 19(2), 1-8

Keyvan, M., Peters, R.T. 2011. Wetting patterns models for drip irrigation: new empirical model. Journal of Irrigation and Drainage Engineering, 137(8), 530-536. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320

Mualem,Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Journal, 12, 513. https://doi.org/10.1029/WR012i003p00513

Neuman, S.P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resources Research, 12, 564-565. https://doi.org/10.1029/WR012i003p00564

Pullan, A.J., Collins, I.F. 1987. Two and three-dimensional steady quasi-linear infiltration from buried and surface cavities using boundary element techniques. Water Resources Research, 23(8), 1633-1644. https://doi.org/10.1029/WR023i008p01633

Raats, P.A.C. 1971. Steady infiltration from point sources, cavities and basins. Soil Sci. Soc. Am. Proc., 35, 689-694. https://doi.org/10.2136/sssaj1971.03615995003500050020x

Richards, L.A. 1931. Capillary conduction of liquids in porous medium. Journal of Applied Physics, 1, 318-333. https://doi.org/10.1063/1.1745010

Roth, R.L. 1974. Soil moisture distribution and wetting pattern from a point source. Proceedings of 2nd international drip irrigation congress. California. EEUU. 246-251.

Schaap, M.G., Leij, F.J., van Genuchten, M.T. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedo-transfer functions. Journal of Hydrology, 251, 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8

Schwartzman, M., Zur, B. 1986. Emitter Spacing and Geometry of Wetted Soil Volume. J. Irrig. Drain. Eng., 112(3), 242-253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242)

Šimůnek, J., van Genuchten, M., Šejna, M. 2006. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual. Version 1.0. University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic.

Van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Warrick, A.W. 1974. Time-dependent linearized infiltration: I. Point source. Soil Sci.Soc.Amer. Proc., 34, 383. https://doi.org/10.2136/sssaj1974.03615995003800030008x

Warrick, A.W., Lomen, D.O. 1976. Time-dependent linearized infiltration: III. Strip and disc sources. Soil Sci. Soc. Amer. Proc., 40, 639-643. https://doi.org/10.2136/sssaj1976.03615995004000050014x

Warrick, A.W. 1992. Models for disk infiltrometer. Water Resources Research, 28, 1319-1327. https://doi.org/10.1029/92WR00149

Weir, G.J. 1987. Steady infiltration from small shallow circular ponds. Water Resources Research, 23, 733-736. https://doi.org/10.1029/WR023i004p00733

Wooding, R.A. 1968. Steady infiltration from a shallow circular pond. Water Resources Research, 4, 1259-1273. https://doi.org/10.1029/WR004i006p01259

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem