- -

Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono

Show full item record

Álvarez-Villa, ÓD.; Franco, D.; Vergara, S.; García, V.; Cortés, M.; Giraldo, J.; Montoya, J.... (2023). Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono. Ingeniería del Agua. 27(2):139-167. https://doi.org/10.4995/ia.2023.19198

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193189

Files in this item

Item Metadata

Title: Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono
Secondary Title: Returns on investment in conservation of tropical basins including the issuance of carbon credits
Author: Álvarez-Villa, Óscar D. Franco, Diego Vergara, Santiago García, Victor Cortés, Mónica Giraldo, Jorge Montoya, Juliana Gómez, José Peña, Nathalie Rogeliz, Carlos
Issued date:
Abstract:
[EN] This paper presents the return-on-investment analysis for implementing conservation projects by the VivoCuenca Corporation. This water found operates for the Chinchiná river basin (Colombia) and supplies the water ...[+]


[ES] Se presenta un análisis de retorno de la inversión por la implementación de proyectos de conservación por parte de la Corporación VivoCuenca, Fondo de Agua que opera en la cuenca del río Chinchiná, Colombia, la cual ...[+]
Subjects: Water found , Return-on-investment , Hydrological modeling , Carbon sequestration , Fondos del agua , Retorno de la inversión , Modelación hidrológica , Secuestro de carbono
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.19198
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ia.2023.19198
Thanks:
El equipo de trabajo agradece a la Alianza Latinoamericana de Fondos del Agua, The Nature Conservancy, el Banco Interamericano de Desarrollo y al Ministerio Federal de Medio Ambiente, Protección de la Naturaleza y Seguridad ...[+]
Type: Artículo

References

Abell, R., Asquith, N., Boccaletti, G., Bremer, L., Chapin, E., Erickson-Quiroz, A., Higgins, J., Johnson, J., Kang, S., Karres, N., Lehner, B., McDonald, R., Raepple, J., Shemie, D., Simmons, E., Sridhar, A., Vigerstøl, K., Vogl, A., Wood, S. 2017. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection. Executive Summary. The Nature Conservancy, Arlington, VA, USA. Consultado en línea el 18 de abril de 2023: https://www.nature.org/content/dam/tnc/nature/en/documents/BeyondtheSource_ExecSummary_FINAL.pdf

Arias, P.A., Ortega, G., Villegas, L.D., Martínez, J.A. 2021. Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingeniería, 100, 75-96. https://doi.org/10.17533/udea.redin

Bonham-Carter, G. 1994. Geographic Information Systems for Geoscientists: Modelling With GIS. Computer Methods in Geosciences. Pergamon, Ottawa, Ontario, Canada. 417 p. [+]
Abell, R., Asquith, N., Boccaletti, G., Bremer, L., Chapin, E., Erickson-Quiroz, A., Higgins, J., Johnson, J., Kang, S., Karres, N., Lehner, B., McDonald, R., Raepple, J., Shemie, D., Simmons, E., Sridhar, A., Vigerstøl, K., Vogl, A., Wood, S. 2017. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection. Executive Summary. The Nature Conservancy, Arlington, VA, USA. Consultado en línea el 18 de abril de 2023: https://www.nature.org/content/dam/tnc/nature/en/documents/BeyondtheSource_ExecSummary_FINAL.pdf

Arias, P.A., Ortega, G., Villegas, L.D., Martínez, J.A. 2021. Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingeniería, 100, 75-96. https://doi.org/10.17533/udea.redin

Bonham-Carter, G. 1994. Geographic Information Systems for Geoscientists: Modelling With GIS. Computer Methods in Geosciences. Pergamon, Ottawa, Ontario, Canada. 417 p.

Brauman, K.A., Benner, R., Benitez, S., Bremer, L., Vigerstøl, K. 2019. Water Funds. In: Mandle, L., Ouyang, Z., Salzman, J.E., Daily, G. (eds) Green Growth That Works. Island Press, Washington, DC. https://doi.org/10.5822/978-1-64283-004-0_9

Bussi, G., Francés, F., Montoya, J. J., Julien, P. Y. 2014. Distributed sediment yield modelling: importance of initial sediment conditions. Environmental Modelling & Software, 58, 58-70. https://doi.org/10.1016/J.ENVSOFT.2014.04.010

Bussi, G., Rodríguez-Lloveras, X., Francés, F., Benito, G., Sánchez-Moya, Y., Sopeña, A. 2013. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrology and Earth System Sciences, 17(8), 3339-3354. https://doi.org/10.5194/HESS-17-3339-2013

Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C. A. J., Kapos, V., Key, I., Roe, D., Smith, A., Woroniecki, S., Seddon, N. 2020. Mapping the effectiveness of nature-based solutions for climate change adaptation. Global Change Biology, 26(11), 6134-6155. https://doi.org/10.1111/GCB.15310

Chen, S.T., Yu, P.S., Tang, Y.H. 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13-22. https://doi.org/10.1016/j.jhydrol.2010.01.021

Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C.R., Renaud, F.G., Welling, R., Walters, G. 2019. Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 98, 20-29. https://doi.org/10.1016/J.ENVSCI.2019.04.014

Corpocaldas. 2014. Plan de Ordenamiento y Manejo de la Cuenca Hidrográfica del Río Chinchiná. Manizales, Caldas, Colombia.

Deutsch, C.V., Journel, A.G. 1998. GSLIB: Geostatistical Software Library and User’s Guide. Second Edition. Oxford University Press; Applied Geostatistics Series. New York, Estados Unidos. 369 p.

Didan, K., Huete, A. 2006. MODIS Vegetation Index Product Series Collection 5 Change Summary. MODIS VI C5 Changes. The University of Arizona. Tucson, Arizona, Estados Unidos. 17 p.

Dubayah, R., Armston, J., Healey, S.P., Bruening, J.M., Patterson, P.L., Kellner, J.R., Duncanson, L., Saarela, S., Ståhl, G., Yang, Z., Tang, H., Blair, J.B., Fatoyinbo, L., Goetz, S., Hancock, S., Hansen, M., Hofton, M., Hurtt, G., Luthcke, S., 2022. GEDI launches a new era of biomass inference from space. Environmental Research Letters, 17. https://doi.org/10.1088/1748-9326/ac8694

Dumitru, A., Laura, W. 2021. Evaluating the impact of nature-based solutions: A Handbook for Practitioners. https://doi.org/10.13140/RG.2.2.10757.47843

Ferreira, B.M., Soares-Filho, B.S., Pereira, F.M.Q. 2019. The Dinamica EGO virtual machine. Science of Computer Programming, 173, 3-20. https://doi.org/10.1016/J.SCICO.2018.02.002

Francés, F. 2010. Modelo TETIS. Manual de Usuario y Modelo Conceptual. Universidad Politécnica de Valencia. Valencia, España. Disponible en http://lluvia.dihma.upv.es/. 72 p.

Francés, F., Vélez, J.I., Vélez, J.J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. https://doi.org/10.1016/J.JHYDROL.2006.06.032

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J. 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66

Gómez-Hernández, J.J., Cassiraga, E.F. 1994. Theory and Practice of Sequential Simulation. In Geostatistical Simulations (M. Armstrong, P. Dowd, eds.). Springer, Fontainebleau, France. p. 111-124. https://doi.org/10.1007/978-94-015-8267-4_10

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press; Applied Geostatistics Series. New York, Estados Unidos. 483 p.

Houska, T., Kraft, P., Chamorro-Chavez, A., Breuer, L. 2015. SPOTting Model Parameters Using a Ready-Made Python Package. PLOS ONE, 10(12), e0145180. https://doi.org/10.1371/JOURNAL.PONE.0145180

IPCC. 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Reino Unido y Nueva York, Estados Unidos, pp. 3-33. https://doi.org/10.1017/9781009325844.001

Kroeger, T., Klemz, C., Boucher, T., Fisher, J.R.B., Acosta, E., Cavassani, A.T., Dennedy-Frank, P.J., Garbossa, L., Blainski, E., Santos, R.C., Giberti, S., Petry, P., Shemie, D., Dacol, K. 2019. Returns on investment in watershed conservation: Application of a best practices analytical framework to the Río Camboriú Water Producer program, Santa Catarina, Brazil. Science of The Total Environment, 657, 1368-1381. https://doi.org/10.1016/J.SCITOTENV.2018.12.116

Krysanova, V., Arnold, J.G. 2008. Advances in ecohydrological modelling with SWAT-a review. Hydrological Sciences Journal, 53(5), 939-947. https://doi.org/10.1623/hysj.53.5.939

Maraun, D. 2016. Bias correcting climate change simulations - a critical review. Current Climate Change Reports, 2, 211-220. https://doi.org/10.1007/s40641-016-0050-x.

Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann, J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B., Havlík, P., Hanssen, S., Humpenöder, F., Landholm, D., Lawrence, D. 2021. Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, (August), 1-34. https://doi.org/10.1111/gcb.15873

Rojas, R., Julien, P, Johnson, B. 2003. CASC2D-SED v 1.0 Reference Manual A 2-Dimensional Rainfall-Runoff and Sediment Model. Colorado State University. Boulder, Colorado, Estados Unidos. 140 p.

Running, S.W., Mu, Q., Zhao, M., Moreno, A. 2017. User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). NASA Earth Observing System MODIS Land Algorithm, 36 p.

Saxton, K. E., Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70, 1569-1578. https://doi.org/10.2136/sssaj2005.0117

Soares-Filho, B., Rodrigues, H., Costa, W. (2009). Modelamiento de dinámica ambiental con Dinámica EGO. Giudice, R. trad. Belo Horizonte, Brazil, Centro de Sensoriamento Remoto/Universidade Federal de Minas Gerais. 119 p.

Stafford, L., Shemie, D., Kroeger, T., Baker, T., Apse, C., Turpie, J., Forsythe, K. 2008. Business Case for The Greater Cape Town Water Fund. Editado por The Nature Conservancy. Consultado en línea el 18 de abril de 2023: https://waterfundstoolbox.org/regions

The Nature Conservancy. 2018. Water Funds Field Guide. Consultado en línea el 18 de abril de 2023: https://waterfundstoolbox.org/regions.

del Valle, J.I., Restrepo, I.H., María Londoño, M.M. 2011. Recuperación de la biomasa mediante la sucesión secundaria, Cordillera Central de los Andes, Colombia. Revista de Biología Tropical, 59(3), 1337-1358. https://doi.org/10.15517/rbt.v0i0.3403

Velasco-Forero, C.. Sampere-Torres, D.. Cassiraga, E.. Gomez-Hernandez, J.J. 2009. A non-parametric automatic blending methodology to estimate rainfall fields. Advances in Water Resources, 32(7), 986-1002. https://10.1016/j.advwatres.2008.10.004

Velásquez, N., Hoyos, C. D., Vélez, J. I., Zapata, E. 2020. Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin. Hydrology and Earth System Sciences, 24(3), 1367-1392. https://doi.org/10.5194/HESS-24-1367-2020

Velásquez N, Vélez J.I., Álvarez-Villa O.D., Salamanca S.P. 2023. Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology, 10(4), 76. https://doi.org/10.3390/hydrology10040076

Vélez, J.J., Puricelli, M., López Unzu, F., Francés, F. 2009. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth System Sciences, 13(2), 229-246. https://doi.org/10.5194/HESS-13-229-2009

Yao, T., Journel, A.G. 1998. Automatic Modeling of (Cross) Covariance Tables Using Fast Fourier Transform. Mathematical Geology, 30(6), 589-615. https://doi.org/10.1023/A:1022335100486

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record