Mostrar el registro sencillo del ítem
dc.contributor.author | Álvarez-Villa, Óscar D. | es_ES |
dc.contributor.author | Franco, Diego | es_ES |
dc.contributor.author | Vergara, Santiago | es_ES |
dc.contributor.author | García, Victor | es_ES |
dc.contributor.author | Cortés, Mónica | es_ES |
dc.contributor.author | Giraldo, Jorge | es_ES |
dc.contributor.author | Montoya, Juliana | es_ES |
dc.contributor.author | Gómez, José | es_ES |
dc.contributor.author | Peña, Nathalie | es_ES |
dc.contributor.author | Rogeliz, Carlos | es_ES |
dc.date.accessioned | 2023-05-08T07:58:36Z | |
dc.date.available | 2023-05-08T07:58:36Z | |
dc.date.issued | 2023-04-28 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/193189 | |
dc.description.abstract | [EN] This paper presents the return-on-investment analysis for implementing conservation projects by the VivoCuenca Corporation. This water found operates for the Chinchiná river basin (Colombia) and supplies the water demands for Manizales city. This analysis consists in proposing a catalog of Nature-Based Solutions (NbS) to improve the following ecosystemic services: (i) sediment retention, (ii) carbon sequestration, and (iii) hydric regulation. We evaluated each set of proposed NbS s financial viability using the return of inversion analysis (ROA). ROA encompasses the balance between the operation costs, NbS implementation costs, avoided costs, and co-benefits. In this case, we consider potential savings due to reduced sediment treatment costs associated with the NbS implementation and co-benefits for emitting carbon credits. Since the primary information is scarce, we use distributed water and carbon cycle modeling to calculate the physical variables needed for financial balances, such as liquid discharges, solid discharges, biomass, and sequestrated CO2. Our results show that the business case is viable only when it is possible to emit and sell carbon credits supported in the CO2 sequestered in the implementation of the NbS. | es_ES |
dc.description.abstract | [ES] Se presenta un análisis de retorno de la inversión por la implementación de proyectos de conservación por parte de la Corporación VivoCuenca, Fondo de Agua que opera en la cuenca del río Chinchiná, Colombia, la cual abastece la ciudad de Manizales. Este análisis consiste en el planteamiento de un catálogo de escenarios de Soluciones Basadas en la Naturaleza (SbN) que propenden por mejorar los servicios ecosistémicos de retención de sedimentos, secuestro de carbono y regulación hídrica. Para cada conjunto de SbN propuestos se evalúa su viabilidad financiera mediante un análisis de retorno de inversión, el cual engloba el balance de los costos de operación, los costos de implementación de las SbN, costos evitados y co-beneficios. En este caso se consideran los ahorros potenciales por disminución de sedimentos tratados debido a la implementación de las SbN y co-beneficios asociados a la venta de bonos de carbono. Dada la escasez de información, las variables físicas requeridas para los balances financieros (caudales sólidos y líquidos, biomasa y emisiones de CO2 evitadas) se obtienen mediante la implementación de modelos distribuidos de los ciclos del agua y del carbono. Los resultados muestran que el caso de negocio es viable únicamente si se considera la emisión y venta de bonos de carbono por efecto del secuestro de CO2 en las SbN propuestas. | es_ES |
dc.description.sponsorship | El equipo de trabajo agradece a la Alianza Latinoamericana de Fondos del Agua, The Nature Conservancy, el Banco Interamericano de Desarrollo y al Ministerio Federal de Medio Ambiente, Protección de la Naturaleza y Seguridad Nuclear de la República de Alemania por el apoyo financiero para el desarrollo de este trabajo. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Water found | es_ES |
dc.subject | Return-on-investment | es_ES |
dc.subject | Hydrological modeling | es_ES |
dc.subject | Carbon sequestration | es_ES |
dc.subject | Fondos del agua | es_ES |
dc.subject | Retorno de la inversión | es_ES |
dc.subject | Modelación hidrológica | es_ES |
dc.subject | Secuestro de carbono | es_ES |
dc.title | Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono | es_ES |
dc.title.alternative | Returns on investment in conservation of tropical basins including the issuance of carbon credits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.19198 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Álvarez-Villa, ÓD.; Franco, D.; Vergara, S.; García, V.; Cortés, M.; Giraldo, J.; Montoya, J.... (2023). Retornos de la inversión en la conservación de cuencas tropicales incluyendo la emisión de bonos de carbono. Ingeniería del Agua. 27(2):139-167. https://doi.org/10.4995/ia.2023.19198 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.19198 | es_ES |
dc.description.upvformatpinicio | 139 | es_ES |
dc.description.upvformatpfin | 167 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\19198 | es_ES |
dc.contributor.funder | Banco Interamericano de Desarrollo | es_ES |
dc.contributor.funder | Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, Alemania | es_ES |
dc.contributor.funder | Nature Conservancy | es_ES |
dc.contributor.funder | Alianza Latinoamericana de Fondos de Agua | es_ES |
dc.description.references | Abell, R., Asquith, N., Boccaletti, G., Bremer, L., Chapin, E., Erickson-Quiroz, A., Higgins, J., Johnson, J., Kang, S., Karres, N., Lehner, B., McDonald, R., Raepple, J., Shemie, D., Simmons, E., Sridhar, A., Vigerstøl, K., Vogl, A., Wood, S. 2017. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection. Executive Summary. The Nature Conservancy, Arlington, VA, USA. Consultado en línea el 18 de abril de 2023: https://www.nature.org/content/dam/tnc/nature/en/documents/BeyondtheSource_ExecSummary_FINAL.pdf | es_ES |
dc.description.references | Arias, P.A., Ortega, G., Villegas, L.D., Martínez, J.A. 2021. Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingeniería, 100, 75-96. https://doi.org/10.17533/udea.redin | es_ES |
dc.description.references | Bonham-Carter, G. 1994. Geographic Information Systems for Geoscientists: Modelling With GIS. Computer Methods in Geosciences. Pergamon, Ottawa, Ontario, Canada. 417 p. | es_ES |
dc.description.references | Brauman, K.A., Benner, R., Benitez, S., Bremer, L., Vigerstøl, K. 2019. Water Funds. In: Mandle, L., Ouyang, Z., Salzman, J.E., Daily, G. (eds) Green Growth That Works. Island Press, Washington, DC. https://doi.org/10.5822/978-1-64283-004-0_9 | es_ES |
dc.description.references | Bussi, G., Francés, F., Montoya, J. J., Julien, P. Y. 2014. Distributed sediment yield modelling: importance of initial sediment conditions. Environmental Modelling & Software, 58, 58-70. https://doi.org/10.1016/J.ENVSOFT.2014.04.010 | es_ES |
dc.description.references | Bussi, G., Rodríguez-Lloveras, X., Francés, F., Benito, G., Sánchez-Moya, Y., Sopeña, A. 2013. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrology and Earth System Sciences, 17(8), 3339-3354. https://doi.org/10.5194/HESS-17-3339-2013 | es_ES |
dc.description.references | Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C. A. J., Kapos, V., Key, I., Roe, D., Smith, A., Woroniecki, S., Seddon, N. 2020. Mapping the effectiveness of nature-based solutions for climate change adaptation. Global Change Biology, 26(11), 6134-6155. https://doi.org/10.1111/GCB.15310 | es_ES |
dc.description.references | Chen, S.T., Yu, P.S., Tang, Y.H. 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13-22. https://doi.org/10.1016/j.jhydrol.2010.01.021 | es_ES |
dc.description.references | Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C.R., Renaud, F.G., Welling, R., Walters, G. 2019. Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 98, 20-29. https://doi.org/10.1016/J.ENVSCI.2019.04.014 | es_ES |
dc.description.references | Corpocaldas. 2014. Plan de Ordenamiento y Manejo de la Cuenca Hidrográfica del Río Chinchiná. Manizales, Caldas, Colombia. | es_ES |
dc.description.references | Deutsch, C.V., Journel, A.G. 1998. GSLIB: Geostatistical Software Library and User’s Guide. Second Edition. Oxford University Press; Applied Geostatistics Series. New York, Estados Unidos. 369 p. | es_ES |
dc.description.references | Didan, K., Huete, A. 2006. MODIS Vegetation Index Product Series Collection 5 Change Summary. MODIS VI C5 Changes. The University of Arizona. Tucson, Arizona, Estados Unidos. 17 p. | es_ES |
dc.description.references | Dubayah, R., Armston, J., Healey, S.P., Bruening, J.M., Patterson, P.L., Kellner, J.R., Duncanson, L., Saarela, S., Ståhl, G., Yang, Z., Tang, H., Blair, J.B., Fatoyinbo, L., Goetz, S., Hancock, S., Hansen, M., Hofton, M., Hurtt, G., Luthcke, S., 2022. GEDI launches a new era of biomass inference from space. Environmental Research Letters, 17. https://doi.org/10.1088/1748-9326/ac8694 | es_ES |
dc.description.references | Dumitru, A., Laura, W. 2021. Evaluating the impact of nature-based solutions: A Handbook for Practitioners. https://doi.org/10.13140/RG.2.2.10757.47843 | es_ES |
dc.description.references | Ferreira, B.M., Soares-Filho, B.S., Pereira, F.M.Q. 2019. The Dinamica EGO virtual machine. Science of Computer Programming, 173, 3-20. https://doi.org/10.1016/J.SCICO.2018.02.002 | es_ES |
dc.description.references | Francés, F. 2010. Modelo TETIS. Manual de Usuario y Modelo Conceptual. Universidad Politécnica de Valencia. Valencia, España. Disponible en http://lluvia.dihma.upv.es/. 72 p. | es_ES |
dc.description.references | Francés, F., Vélez, J.I., Vélez, J.J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. https://doi.org/10.1016/J.JHYDROL.2006.06.032 | es_ES |
dc.description.references | Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J. 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66 | es_ES |
dc.description.references | Gómez-Hernández, J.J., Cassiraga, E.F. 1994. Theory and Practice of Sequential Simulation. In Geostatistical Simulations (M. Armstrong, P. Dowd, eds.). Springer, Fontainebleau, France. p. 111-124. https://doi.org/10.1007/978-94-015-8267-4_10 | es_ES |
dc.description.references | Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press; Applied Geostatistics Series. New York, Estados Unidos. 483 p. | es_ES |
dc.description.references | Houska, T., Kraft, P., Chamorro-Chavez, A., Breuer, L. 2015. SPOTting Model Parameters Using a Ready-Made Python Package. PLOS ONE, 10(12), e0145180. https://doi.org/10.1371/JOURNAL.PONE.0145180 | es_ES |
dc.description.references | IPCC. 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Reino Unido y Nueva York, Estados Unidos, pp. 3-33. https://doi.org/10.1017/9781009325844.001 | es_ES |
dc.description.references | Kroeger, T., Klemz, C., Boucher, T., Fisher, J.R.B., Acosta, E., Cavassani, A.T., Dennedy-Frank, P.J., Garbossa, L., Blainski, E., Santos, R.C., Giberti, S., Petry, P., Shemie, D., Dacol, K. 2019. Returns on investment in watershed conservation: Application of a best practices analytical framework to the Río Camboriú Water Producer program, Santa Catarina, Brazil. Science of The Total Environment, 657, 1368-1381. https://doi.org/10.1016/J.SCITOTENV.2018.12.116 | es_ES |
dc.description.references | Krysanova, V., Arnold, J.G. 2008. Advances in ecohydrological modelling with SWAT-a review. Hydrological Sciences Journal, 53(5), 939-947. https://doi.org/10.1623/hysj.53.5.939 | es_ES |
dc.description.references | Maraun, D. 2016. Bias correcting climate change simulations - a critical review. Current Climate Change Reports, 2, 211-220. https://doi.org/10.1007/s40641-016-0050-x. | es_ES |
dc.description.references | Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann, J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B., Havlík, P., Hanssen, S., Humpenöder, F., Landholm, D., Lawrence, D. 2021. Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, (August), 1-34. https://doi.org/10.1111/gcb.15873 | es_ES |
dc.description.references | Rojas, R., Julien, P, Johnson, B. 2003. CASC2D-SED v 1.0 Reference Manual A 2-Dimensional Rainfall-Runoff and Sediment Model. Colorado State University. Boulder, Colorado, Estados Unidos. 140 p. | es_ES |
dc.description.references | Running, S.W., Mu, Q., Zhao, M., Moreno, A. 2017. User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). NASA Earth Observing System MODIS Land Algorithm, 36 p. | es_ES |
dc.description.references | Saxton, K. E., Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70, 1569-1578. https://doi.org/10.2136/sssaj2005.0117 | es_ES |
dc.description.references | Soares-Filho, B., Rodrigues, H., Costa, W. (2009). Modelamiento de dinámica ambiental con Dinámica EGO. Giudice, R. trad. Belo Horizonte, Brazil, Centro de Sensoriamento Remoto/Universidade Federal de Minas Gerais. 119 p. | es_ES |
dc.description.references | Stafford, L., Shemie, D., Kroeger, T., Baker, T., Apse, C., Turpie, J., Forsythe, K. 2008. Business Case for The Greater Cape Town Water Fund. Editado por The Nature Conservancy. Consultado en línea el 18 de abril de 2023: https://waterfundstoolbox.org/regions | es_ES |
dc.description.references | The Nature Conservancy. 2018. Water Funds Field Guide. Consultado en línea el 18 de abril de 2023: https://waterfundstoolbox.org/regions. | es_ES |
dc.description.references | del Valle, J.I., Restrepo, I.H., María Londoño, M.M. 2011. Recuperación de la biomasa mediante la sucesión secundaria, Cordillera Central de los Andes, Colombia. Revista de Biología Tropical, 59(3), 1337-1358. https://doi.org/10.15517/rbt.v0i0.3403 | es_ES |
dc.description.references | Velasco-Forero, C.. Sampere-Torres, D.. Cassiraga, E.. Gomez-Hernandez, J.J. 2009. A non-parametric automatic blending methodology to estimate rainfall fields. Advances in Water Resources, 32(7), 986-1002. https://10.1016/j.advwatres.2008.10.004 | es_ES |
dc.description.references | Velásquez, N., Hoyos, C. D., Vélez, J. I., Zapata, E. 2020. Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin. Hydrology and Earth System Sciences, 24(3), 1367-1392. https://doi.org/10.5194/HESS-24-1367-2020 | es_ES |
dc.description.references | Velásquez N, Vélez J.I., Álvarez-Villa O.D., Salamanca S.P. 2023. Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology, 10(4), 76. https://doi.org/10.3390/hydrology10040076 | es_ES |
dc.description.references | Vélez, J.J., Puricelli, M., López Unzu, F., Francés, F. 2009. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth System Sciences, 13(2), 229-246. https://doi.org/10.5194/HESS-13-229-2009 | es_ES |
dc.description.references | Yao, T., Journel, A.G. 1998. Automatic Modeling of (Cross) Covariance Tables Using Fast Fourier Transform. Mathematical Geology, 30(6), 589-615. https://doi.org/10.1023/A:1022335100486 | es_ES |