- -

Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Águila-León, Jesús es_ES
dc.contributor.author Vargas-Salgado, Carlos es_ES
dc.contributor.author Chiñas-Palacios, Cristian es_ES
dc.contributor.author Díaz-Bello, Dácil es_ES
dc.date.accessioned 2023-05-10T18:01:16Z
dc.date.available 2023-05-10T18:01:16Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193238
dc.description.abstract [EN] Solar photovoltaic systems are widely used; however, their performance is bound to weather conditions, depending on irradiation, temperature, and the effect of shadows. Maximum Power Point Tracking techniques have been developed to solve this issue. Standard methods use mainly-two algorithms: Perturb and Observe and Incremental Conductance. However, such algorithms perform differently when the Solar photovoltaic system works under sudden solar irradiation changes, temperature, and load changes. This research proposes an opti-mized Maximum Power Point Tracking controller based on the Grey Wolf Optimization algorithm using the MATLAB/Simulink software as an alternative to the traditional techniques. Global efficiency and Root Mean Square Error evaluate the controller's performance. The response time is analyzed using the Grey Wolf Optimizer algorithm, Wolf Optimizer Algorithm, Simulated Annealing, and Particle Swarm Optimization. These four metaheuristic algorithms are compared to the Perturb and Observe, and Incremental Conductance algorithms. The models are analyzed for the transient state and full-day operation scenarios for constant and variable ir-radiations, temperatures, and loads. The comparative results show that the Maximum Power Point Tracking controller optimized by the Grey Wolf Optimizer algorithm has superior performance, giving an average 6% output power higher than the other controllers under the test scenarios evaluated. The efficiency of the proposed model was, on average, 3% higher than the Incremental Conductance and Perturb & Observe controllers. For the MPPT controller tunning stage, the Grey Wolf Optimizer Algorithm had the best performance with an RMSE of 255.3549 with a compute time of 27.3 min; the worst performing was the Particle Swarm Optimization with an RMSE of 332.4075 and 27.8 min computation time. The proposed GWO optimized MPPT controller had the faster settling time for each irradiation level compared, with an average of 0.175 s. Also, results showed an improvement of the system response throughout the Maximum Power Point Tracking controller optimized by the Grey Wolf Optimizer algorithm since a lower curling effect is obtained at power converter outputs. es_ES
dc.description.sponsorship This research has been funded by the PURPOSED project (ref: PID2021-128822OB-I00), financed by the Spanish State Investigation Agency and by of the Catedra de Transicion Energetica Urbana -a chair hosted at the Universitat Politècnica de València and funded by Ajuntament de València-Las Naves and Fundacio València Clima i Energia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Optimization es_ES
dc.subject Metaheuristic algorithms es_ES
dc.subject Grey Wolf Optimization es_ES
dc.subject Microgrid es_ES
dc.subject Photovoltaic es_ES
dc.subject Maximum Power Point Tracking es_ES
dc.subject Bio-inspired algorithm es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2022.118700 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-128822OB-I00/ es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2025-01-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Águila-León, J.; Vargas-Salgado, C.; Chiñas-Palacios, C.; Díaz-Bello, D. (2023). Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms. Expert Systems with Applications. 211:1-22. https://doi.org/10.1016/j.eswa.2022.118700 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2022.118700 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 211 es_ES
dc.relation.pasarela S\470943 es_ES
dc.contributor.funder Ajuntament de València es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fundació València Clima i Energia es_ES
dc.contributor.funder Cátedra de Transición Energética Urbana, Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem